4.7 Article

MOLGW 1: Many-body perturbation theory software for atoms, molecules, and clusters

期刊

COMPUTER PHYSICS COMMUNICATIONS
卷 208, 期 -, 页码 149-161

出版社

ELSEVIER
DOI: 10.1016/j.cpc.2016.06.019

关键词

Electronic structure of molecules; Many-body perturbation theory; GW approximation; Bethe-Salpeter equation

资金

  1. U.S. Department of Energy, Office of Basic Energy Sciences
  2. U.S. Department of Energy, Office of Advanced Scientific Computing Research through the SciDAC Program on Excited State Phenomena
  3. Chemical Sciences, Geosciences, and Biosciences Division in Office of Basic Energy Sciences of the U.S. Department of Energy
  4. GENCI-CCRT-TGCC [2015-096018]

向作者/读者索取更多资源

We summarize the MOLGW code that implements density-functional theory and many-body perturbation theory in a Gaussian basis set. The code is dedicated to the calculation of the many-body self-energy within the GW approximation and the solution of the Bethe-Salpeter equation. These two types of calculations allow the user to evaluate physical quantities that can be compared to spectroscopic experiments. Quasiparticle energies, obtained through the calculation of the GW self-energy, can be compared to photoemission or transport experiments, and neutral excitation energies and oscillator strengths, obtained via solution of the Bethe-Salpeter equation, are measurable by optical absorption. The implementation choices outlined here have aimed at the accuracy and robustness of calculated quantities with respect to measurements. Furthermore, the algorithms implemented in MOLGW allow users to consider molecules or clusters containing up to 100 atoms with rather accurate basis sets, and to choose whether or not to apply the resolution-of-the-identity approximation. Finally, we demonstrate the parallelization efficacy of the MOLGW code over several hundreds of processors. Program title: MOLGW Catalogue identifier: AFAW_v1_0 Program summary URL: http://cpc.cs.qub.ac.ukisummaries/AFAW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL v3 No. of lines in distributed program, including test data, etc.: 167871 No. of bytes in distributed program, including test data, etc.: 1309269 Distribution format: tar.gz Programming language: Fortran 2003 with a few C subroutines, Python scripts. Classification: 7.3, 16.6, 16.10. External routines: libint [2], libxc [3], SCALAPACK [4] (optional) Nature of problem: Prediction of the electronic structure of atoms, molecules, clusters with a particular interest in their spectroscopic features, such as quasiparticle energies and optical spectra. Solution method: Using the GW approximation to many-body perturbation theory, MOLGW calculates total-energies, quasiparticle energies, and optical excitations. Additional comments: Python3 is required to run the test suite provided. Running time: From 30 s to a few hours (C) 2016 Elsevier E.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Multidisciplinary Sciences

Room-temperature skyrmion lattice in a layered magnet (Fe0.5Co0.5)5GeTe2

Hongrui Zhang, David Raftrey, Ying-Ting Chan, Yu-Tsun Shao, Rui Chen, Xiang Chen, Xiaoxi Huang, Jonathan T. Reichanadter, Kaichen Dong, Sandhya Susarla, Lucas Caretta, Zhen Chen, Jie Yao, Peter Fischer, Jeffrey B. Neaton, Weida Wu, David A. Muller, Robert J. Birgeneau, Ramamoorthy Ramesh

Summary: In this study, a novel magnetic ground state, namely Néel-type skyrmion lattice, is observed at room temperature in a single-phase, layered 2D magnet. The relationship between thickness and magnetic domain size follows Kittel's law. The current-induced motion of the skyrmion lattice at room temperature is successfully observed. This discovery provides an important platform for layered device applications and studies of topological and quantum effects in 2D.

SCIENCE ADVANCES (2022)

Article Materials Science, Multidisciplinary

Optimally tuned starting point for single-shot GW calculations of solids

Stephen E. Gant, Jonah B. Haber, Marina R. Filip, Francisca Sagredo, Dahvyd Wing, Guy Ohad, Leeor Kronik, Jeffrey B. Neaton

Summary: This study investigates the accuracy of the WOT-SRSH functional as a generalized Kohn-Sham starting point for single-shot GW calculations. The results show that G(0)W(0)@WOT-SRSH provides comparable precision and accuracy in computing band gaps to more advanced methods, and improves the description of states deeper in the valence band manifold. Additionally, G(0)W(0)@WOT-SRSH reduces the sensitivity of computed band gaps to ambiguities in the tuning procedure.

PHYSICAL REVIEW MATERIALS (2022)

Article Materials Science, Multidisciplinary

A room temperature polar magnetic metal

Hongrui Zhang, Yu-Tsun Shao, Rui Chen, Xiang Chen, Sandhya Susarla, David Raftrey, Jonathan T. Reichanadter, Lucas Caretta, Xiaoxi Huang, Nicholas S. Settineri, Zhen Chen, Jingcheng Zhou, Edith Bourret-Courchesne, Peter Ercius, Jie Yao, Peter Fischer, Jeffrey B. Neaton, David A. Muller, Robert J. Birgeneau, Ramamoorthy Ramesh

Summary: The emergence of long-range magnetic order in noncentrosymmetric compounds has led to the discovery of a polar magnetic metal with unique spin textures and spin transport phenomena. The study reveals a structural transition and the emergence of a polar phase in a wurtzite-structure polar magnetic metal, which exhibits a Ned-type skyrmion lattice and a Rashba-Edelstein effect at room temperature. This discovery provides a promising new framework for investigating intriguing spin topologies and advancing spintronics.

PHYSICAL REVIEW MATERIALS (2022)

Article Chemistry, Multidisciplinary

Zinc Titanium Nitride Semiconductor toward Durable Photoelectrochemical Applications

Ann L. Greenaway, Sijia Ke, Theodore Culman, Kevin R. Talley, John S. Mangum, Karen N. Heinselman, Ryan S. Kingsbury, Rebecca W. Smaha, Melissa K. Gish, Elisa M. Miller, Kristin A. Persson, John M. Gregoire, Sage R. Bauers, Jeffrey B. Neaton, Adele C. Tamboli, Andriy Zakutayev

Summary: Photoelectrochemical fuel generation is a promising method for producing sustainable liquid fuels from water and carbon dioxide using sunlight as the energy input. This study reports on the synthesis and characterization of zinc titanium nitride (ZnTiN2), a photoelectrode material that exhibits self-passivating surface oxides and has both photocatalytic activity and operational stability.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2022)

Article Chemistry, Multidisciplinary

Screening of Excitons by Organic Cations in Quasi-Two-Dimensional Organic-Inorganic Lead-Halide Perovskites

Marina R. Filip, Diana Y. Qiu, Mauro Del Ben, Jeffrey B. Neaton

Summary: Interlayer organic cations play a crucial role in tuning the optoelectronic properties of quasi-two-dimensional halide perovskites, and their effects can be controlled by adjusting the dielectric properties.

NANO LETTERS (2022)

Article Chemistry, Physical

Imaging gate-tunable Tomonaga-Luttinger liquids in 1H-MoSe2 mirror twin boundaries

Tiancong Zhu, Wei Ruan, Yan-Qi Wang, Hsin-Zon Tsai, Shuopei Wang, Canxun Zhang, Tianye Wang, Franklin Liou, Kenji Watanabe, Takashi Taniguchi, Jeffrey B. Neaton, Alexander Weber-Bargioni, Alex Zettl, Z. Q. Qiu, Guangyu Zhang, Feng Wang, Joel E. Moore, Michael F. Crommie

Summary: The authors used scanning tunnelling microscopy and spectroscopy to study the mirror twin boundaries in single-layer 1H-MoSe2 devices. By adjusting the electron density, they successfully visualized the electronic structure of the mirror twin boundaries and confirmed the presence of density wave excitations and spin-charge separation effects, in agreement with the predictions of the Tomonaga-Luttinger liquid theory.

NATURE MATERIALS (2022)

Article Chemistry, Physical

An optimally tuned range-separated hybrid starting point for ab initio GW plus Bethe-Salpeter equation calculations of molecules

Caroline A. A. McKeon, Samia M. M. Hamed, Fabien Bruneval, Jeffrey B. B. Neaton

Summary: The ab initio GW-BSE approach with optimally tuned range-separated hybrids can suppress starting point dependence for molecules, leading to accuracy similar to higher-order wavefunction-based theories.

JOURNAL OF CHEMICAL PHYSICS (2022)

Article Chemistry, Multidisciplinary

Evaluation of the Stability of Diamine-Appended Mg2(dobpdc) Frameworks to Sulfur Dioxide

Surya T. Parker, Alex Smith, Alexander C. Forse, Wei-Chih Liao, Florian Brown-Altvater, Rebecca L. Siegelman, Eugene J. Kim, Nicholas A. Zill, Wenjun Zhang, Jeffrey B. Neaton, Jeffrey A. Reimer, Jeffrey R. Long

Summary: In this study, the stability and CO2 capture performance of diamine-appended Mg2(dobpdc) metal-organic frameworks in the presence of SO2 were investigated. It was found that the materials with primary,primary diamines exhibited better stability to humid SO2. The reaction between SO2 and the primary,secondary or primary,tertiary diamines resulted in material degradation, while the reaction with primary,primary diamines did not affect the metal-diamine bond.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2022)

Article Multidisciplinary Sciences

From an antiferromagnetic insulator to a strongly correlated metal in square-lattice MCl2(pyrazine)2 coordination solids

Panagiota Perlepe, Itziar Oyarzabal, Laura Voigt, Mariusz Kubus, Daniel N. Woodruff, Sebastian E. Reyes-Lillo, Michael L. Aubrey, Philippe Negrier, Mathieu Rouzieres, Fabrice Wilhelm, Andrei Rogalev, Jeffrey B. Neaton, Jeffrey R. Long, Corine Mathoniere, Baptiste Vignolle, Kasper S. Pedersen, Rodolphe Clerac

Summary: The electronic synergy between metal ions and organic linkers is essential for engineering molecule-based materials with high electrical conductivity and metallicity. This study demonstrates the crucial role of metal ions in tuning the electronic properties of such materials, leading to high room-temperature conductivity and the existence of a correlated metal state.

NATURE COMMUNICATIONS (2022)

Article Physics, Multidisciplinary

Accurate Nonempirical Range-Separated Hybrid van der Waals Density Functional for Complex Molecular Problems, Solids, and Surfaces

Vivekanand Shukla, Yang Jiao, Jung-Hoon Lee, Elsebeth Schroeder, Jeffrey B. Neaton, Per Hyldgaard

Summary: We introduce a new general-purpose van der Waals density functional, vdW-DF2-ahbr, which combines vdW-DF2 correlation with a screened Fock exchange. It successfully resolves spurious exchange binding and density-driven errors, significantly improving the performance of existing vdW-DFs for molecular problems.

PHYSICAL REVIEW X (2022)

Article Nanoscience & Nanotechnology

Bidirectional phonon emission in two-dimensional heterostructures triggered by ultrafast charge transfer

Aditya Sood, Jonah B. Haber, Johan Carlstrom, Elizabeth A. Peterson, Elyse Barre, Johnathan D. Georgaras, Alexander H. M. Reid, Xiaozhe Shen, Marc E. Zajac, Emma C. Regan, Jie Yang, Takashi Taniguchi, Kenji Watanabe, Feng Wang, Xijie Wang, Jeffrey B. Neaton, Tony F. Heinz, Aaron M. Lindenberg, Felipe H. da Jornada, Archana Raja

Summary: In this study, lattice dynamics in photoexcited WSe2/WS2 heterostructures were directly visualized using femtosecond electron diffraction. It was found that both WSe2 and WS2 were heated simultaneously on a picosecond timescale, which cannot be explained by phonon transport across the interface. First-principles calculations revealed a fast channel involving layer-hybridized electronic states, enabling phonon-assisted interlayer transfer of photoexcited electrons. Phonons were emitted in both layers on the femtosecond timescale via this channel, consistent with the simultaneous lattice heating observed experimentally. Strong electron-phonon coupling via layer-hybridized electronic states was identified as a novel route for controlling energy transport across atomic junctions.

NATURE NANOTECHNOLOGY (2023)

Correction Multidisciplinary Sciences

A Reversible Single-Molecule Switch based on Activated Antiaromaticity (vol 3, eaao2615, 2022)

X. Yin, Y. Zang, L. Zhu, J. Z. Low, Z. F. Liu, J. Cui, J. B. Neaton, L. Venkataraman, L. M. Campos

SCIENCE ADVANCES (2022)

Article Chemistry, Multidisciplinary

Addressing solar photochemistry durability with an amorphous nickel antimonate photoanode

Lan Zhou, Elizabeth A. Peterson, Karun K. Rao, Yubing Lu, Xiang Li, Yungchieh Lai, Sage R. Bauers, Matthias H. Richter, Kevin Kan, Yu Wang, Paul F. Newhouse, Junko Yano, Jeffrey B. Neaton, Michal Bajdich, John M. Gregoire

Summary: Renewable generation of fuels using solar energy relies on the discovery of materials with durability and high solar-to-chemical conversion efficiency. This paper presents the high-throughput discovery of an amorphous Ni-Sb (1:1) oxide photoanode that meets the requirements of operational stability, visible photoresponse, and appreciable photovoltage. The lack of crystal anisotropy and operational stability of this amorphous photoanode open up new possibilities for photoelectrode development.

CELL REPORTS PHYSICAL SCIENCE (2022)

Article Chemistry, Multidisciplinary

Electronic structure of strain-tunable Janus WSSe-ZnO heterostructures from first-principles

E. A. Peterson, T. T. Debela, G. M. Gomoro, J. B. Neaton, G. A. Asres

Summary: This study investigates the structure and electronic properties of a vdW heterostructure consisting of Janus monolayer WSSe and monolayer ZnO. The effects of alignment, strain, orientation, and electric field on the dipole moments and band edge energies are examined. It is found that the out of plane dipole moment of the ZnO monolayer can be tuned by strain, allowing for a wide range of tuning of the heterostructure band edge energies. This study highlights the potential of strain-tunable 2D materials in controlling band offsets and alignment, with implications for clean energy applications.

RSC ADVANCES (2022)

Article Chemistry, Multidisciplinary

Metal-organic frameworks as O2-selective adsorbents for air separations

David E. Jaramillo, Adam Jaffe, Benjamin E. R. Snyder, Alex Smith, Eric Taw, Rachel C. Rohde, Matthew N. Dods, William DeSnoo, Katie R. Meihaus, T. David Harris, Jeffrey B. Neaton, Jeffrey R. Long

Summary: This study provides a detailed evaluation of the potential of metal-organic frameworks (MOFs) as O-2-selective adsorbents for air separations. The importance of moving beyond traditional evaluation methods and the use of computational approaches are emphasized. Promising MOF systems for investigation are identified and insights for future materials design and evaluation are provided.

CHEMICAL SCIENCE (2022)

Article Computer Science, Interdisciplinary Applications

Modeling and meshing for tokamak edge plasma simulations

Usman Riaz, E. Seegyoung Seol, Robert Hager, Mark S. Shephard

Summary: The accurate representation and effective discretization of a problem domain into a mesh are crucial for achieving high-quality simulation results and computational efficiency. This work presents recent developments in extending an automated tokamak modeling and meshing infrastructure to better support the near flux field following meshing requirements of the XGC Gyro-kinetic Code.

COMPUTER PHYSICS COMMUNICATIONS (2024)

Article Computer Science, Interdisciplinary Applications

Electron-phonon coupling from GW perturbation theory: Practical workflow combining BerkeleyGW, ABINIT, and EPW

Zhenglu Li, Gabriel Antonius, Yang-Hao Chan, Steven G. Louie

Summary: This article presents a workflow for practical calculations of electron-phonon coupling and includes the effect of many-electron correlations using GW perturbation theory. The workflow combines different software packages to enable accurate calculations at the level of quasiparticle band structures.

COMPUTER PHYSICS COMMUNICATIONS (2024)

Article Computer Science, Interdisciplinary Applications

MASAP: A package for atomic scattering amplitude in solids

Akihiro Koide, Sara Rabouli, Pierre Le Meur, Sylvain Tricot, Philippe Schieffer, Didier Sebilleau, Calogero R. Natoli

Summary: We present the MsSpec Atomic Scattering Amplitude Package (MASAP), which includes a computation program and a graphical interface for generating atomic scattering amplitude (ASA). The study investigates the applicability of plane wave (PW) and curved spherical wave (SW) scattering in describing electron propagation. The results show that the imaginary part of the optical potential enhances the elastic scattering in the forward direction but causes damping effects in other directions.

COMPUTER PHYSICS COMMUNICATIONS (2024)

Article Computer Science, Interdisciplinary Applications

A Bi-directional method for evaluating integrals involving higher transcendental functions. HyperRAF: A Julia package for new hyper-radial functions

A. Bagci, Gustavo A. Aucar

Summary: The electron repulsion integrals over Slater-type orbitals with non-integer principal quantum numbers are investigated in this study. These integrals are important in calculations of many-electron systems. New relationships free from hyper-geometric functions are derived to simplify the calculations. With the use of auxiliary functions and straightforward recurrence relationships, these integrals can be efficiently computed, providing initial conditions for the evaluation of expectation values and potentials.

COMPUTER PHYSICS COMMUNICATIONS (2024)

Article Computer Science, Interdisciplinary Applications

First-principles calculations of specular reflection of high-energy electrons during the two-dimensional crystal growth

Andrzej Daniluk

Summary: RHEED_DIFF_2D is an open-source software for qualitative numerical simulations of RHEED oscillation intensity changes with layer deposition, used for interpreting heteroepitaxial structures under different scattering crystal potential models.

COMPUTER PHYSICS COMMUNICATIONS (2024)

Article Computer Science, Interdisciplinary Applications

An incremental singular value decomposition approach for large-scale spatially parallel & distributed but temporally serial data - applied to technical flows ☆

Niklas Kuehl, Hendrik Fischer, Michael Hinze, Thomas Rung

Summary: The article presents a strategy and algorithm for simulation-accompanying, incremental Singular Value Decomposition (SVD) for time-evolving, spatially parallel discrete data sets. The proposed method improves computational efficiency by introducing a bunch matrix, resulting in higher accuracy and practical applicability.

COMPUTER PHYSICS COMMUNICATIONS (2024)

Article Computer Science, Interdisciplinary Applications

TRAVOLTA: GPU acceleration and algorithmic improvements for constructing quantum optimal control fields in photo-excited systems

Jose M. Rodriguez-Borbon, Xian Wang, Adrian P. Dieguez, Khaled Z. Ibrahim, Bryan M. Wong

Summary: This paper presents an open-source software package called TRAVOLTA for massively parallelized quantum optimal control calculations on GPUs. The TRAVOLTA package is an improvement on the previous NIC-CAGE algorithm and incorporates algorithmic improvements for faster convergence. Three different variants of GPU parallelization are examined to evaluate their performance in constructing optimal control fields in various quantum systems. The benchmarks show that the GPU-enhanced TRAVOLTA code produces the same results as previous CPU-based algorithms but with a speedup of more than ten times. The GPU enhancements and algorithmic improvements allow large quantum optimal control calculations to be efficiently executed on modern multi-core computational hardware.

COMPUTER PHYSICS COMMUNICATIONS (2024)

Article Computer Science, Interdisciplinary Applications

MCNOX: A code for computing and interpreting ultrafast nonlinear X-ray spectra of molecules at the multiconfigurational level

Weijie Hua

Summary: This work introduces a program called MCNOX for computing and analyzing ultrafast nonlinear X-ray spectra. It is designed for cutting-edge applications in photochemistry/photophysics enabled by X-ray free-electron lasers and high harmonic generation light sources. The program can calculate steady-state X-ray absorption spectroscopy and three types of ultrafast nonlinear X-ray spectra, and it is capable of identifying major electronic transitions and providing physical and chemical insights from complex signals.

COMPUTER PHYSICS COMMUNICATIONS (2024)

Article Computer Science, Interdisciplinary Applications

PLQ-sim: A computational tool for simulating photoluminescence quenching dynamics in organic donor/acceptor blends

Leandro Benatto, Omar Mesquita, Lucimara S. Roman, Rodrigo B. Capaz, Graziani Candiotto, Marlus Koehler

Summary: Photoluminescence Quenching Simulator (PLQ-Sim) is a user-friendly software for studying the dynamics of photoexcited states at the interface between organic semiconductors. It provides important information on organic photovoltaic and photothermal devices and calculates transfer rates and quenching efficiency.

COMPUTER PHYSICS COMMUNICATIONS (2024)

Article Computer Science, Interdisciplinary Applications

A method of calculating bandstructure in real-space with application to all-electron and full potential

Dongming Li, James Kestyn, Eric Polizzi

Summary: This study introduces a practical and efficient approach to calculate the all-electron full potential band structure in real space using a finite element basis. Instead of the k-space method, this method solves the Kohn-Sham equation self-consistently within a larger finite system enclosing the unit-cell. Non-self-consistent calculations are then performed in the Brillouin zone to obtain the band structure results, which are found to be in excellent agreement with the pseudopotential k-space method. Furthermore, the study successfully observes the band bending of core electrons.

COMPUTER PHYSICS COMMUNICATIONS (2024)

Article Computer Science, Interdisciplinary Applications

EUTERPE: A global gyrokinetic code for stellarator geometry

R. Kleiber, M. Borchardt, R. Hatzky, A. Koenies, H. Leyh, A. Mishchenko, J. Riemann, C. Slaby, J. M. Garcia-Regana, E. Sanchez, M. Cole

Summary: This paper describes the current state of the EUTERPE code, focusing on the implemented models and their numerical implementation. The code is capable of solving the multi-species electromagnetic gyrokinetic equations in a three-dimensional domain. It utilizes noise reduction techniques and grid resolution transformation for efficient computation. Additionally, various hybrid models are implemented for comparison and the study of plasma-particle interactions. The code is parallelized for high scalability on multiple CPUs.

COMPUTER PHYSICS COMMUNICATIONS (2024)

Article Computer Science, Interdisciplinary Applications

SMIwiz: An integrated toolbox for multidimensional seismic modelling and imaging

Pengliang Yang

Summary: This paper presents an open source software called SMIwiz, which combines seismic modelling, reverse time migration, and full waveform inversion into a unified computer implementation. SMIwiz supports both 2D and 3D simulations and provides various computational recipes for efficient calculation. Its independent processing and batchwise job scheduling ensure scalability, and its viability is demonstrated through applications on benchmark models.

COMPUTER PHYSICS COMMUNICATIONS (2024)

Article Computer Science, Interdisciplinary Applications

Generating and grading 34 optimised norm-conserving Vanderbilt pseudopotentials for actinides and super-heavy elements in the PseudoDojo

Christian Tantardini, Miroslav Ilias, Matteo Giantomassi, Alexander G. Kvashnin, Valeria Pershina, Xavier Gonze

Summary: Material discovery has been an active research field, and this study focuses on developing pseudopotentials for actinides and super-heavy elements. These pseudopotentials are crucial for accurate first-principles calculations and simulations.

COMPUTER PHYSICS COMMUNICATIONS (2024)

Article Computer Science, Interdisciplinary Applications

Generalisation of splitting methods based on modified potentials to nonlinear evolution equations of parabolic and Schrödinger type

S. Blanes, F. Casas, C. Gonzalez, M. Thalhammer

Summary: This paper explores the extension of modified potential operator splitting methods to specific classes of nonlinear evolution equations. Numerical experiments confirm the advantages of the proposed fourth-order modified operator splitting method over traditional splitting methods in dealing with Gross-Pitaevskii systems.

COMPUTER PHYSICS COMMUNICATIONS (2024)

Article Computer Science, Interdisciplinary Applications

Pole-fitting for complex functions: Enhancing standard techniques by artificial-neural-network classifiers and regressors *

Siegfried Kaidisch, Thomas U. Hilger, Andreas Krassnigg, Wolfgang Lucha

Summary: Motivated by a use case in theoretical hadron physics, this paper revisits an application of a pole-sum fit to dressing functions of a confined quark propagator. Specifically, it investigates approaches to determine the number and positions of singularities closest to the origin for a function known numerically on a specific grid on the positive real axis. Comparing the efficiency of standard techniques to a pure artificial-neural-network approach and a combination of both, it finds that the combined approach is more efficient. This approach can be applied to similar situations where the positions of poles need to be estimated quickly and reliably from real-axis information alone.

COMPUTER PHYSICS COMMUNICATIONS (2024)