4.7 Article

A data-driven evolutionary algorithm for wind farm layout optimization

期刊

ENERGY
卷 208, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2020.118310

关键词

Wind farm layout; Wake effect; Adaptive differential evolution; Data-driven model; Function approximation

资金

  1. National Natural Science Foundation of China, China [51807023]
  2. Natural Science Foundation of Jiangsu Province, China

向作者/读者索取更多资源

The wind farm layout model is to optimize the location of wind turbines to maximize the power output of the wind farm. Due to the complexity of the wind farm layout problem, the computation of objective function costs lots of time. To reduce the high computational cost while maintaining the solution performance, a data-driven evolutionary algorithm is proposed. An adaptive differential evolution algorithm (ADE) is proposed as the solver of the wind farm layout model. The adaption mechanism of ADE benefits the automatic adjustment of parameters in the mutation and crossover operators to achieve the optimal solution. The general regression neural network (GRNN) algorithm builds the data-driven surrogate model. The data-driven surrogate model is trained and updated using the data generated by the evolutionary algorithm throughout the evolution process. Through the data-driven surrogate model, the objective function is fast approximated and the bad candidate solutions are identified. The algorithm efficiency is greatly improved by fast filtering the bad candidate solutions. The ADE-GRNN is compared to other three conventional optimization methods based on two different wind scenarios. The results show the super-performance of ADE-GRNN in complex situations in terms of power output and execution time. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据