4.7 Article

Multilayer electrochemical-thermal coupled modeling of unbalanced discharging in a serially connected lithium-ion battery module

期刊

ENERGY
卷 209, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2020.118429

关键词

Serially connected battery module; Multilayer electrochemical-thermal coupled model; Unbalanced discharging; Non-uniform cooling

资金

  1. Guangdong Basic and Applied Basic Research Foundation [2020B1515020040]
  2. Natural Science Foundation of Guangdong Province [2018B030311043]
  3. National Natural Science Foundation of China [51776077]
  4. Central Universities Fundamental Research Project in South China University of Technology [2018ZD05]
  5. Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization [2017B030314128]

向作者/读者索取更多资源

The temperature gradient due to the battery cooling thermally drives the unbalanced discharging of a battery module, which is seldom discussed. The shortcoming of the previous modeling methodology of modules also limits the discussion. A multilayer electrochemical-thermal model considering parallel connected cells inside each battery is developed for a serially connected module to investigate the unbalanced discharging with the cooling incorporated. The unbalanced discharging intensifies significantly after the depth of discharge exceeds about 0.8. The unbalanced discharging is the most susceptible to the non-uniform cooling when the cooling performance exactly reaches to the stage of slight improvement. The discharging rate slightly aggravates the unbalanced discharging after 4 C. Reducing the initial temperature of the module exponentially aggravates the unbalanced discharging, which will increase by about 100% when the coolant temperature reduces by 5 degrees C. The local temperature difference of a battery aggravates the unbalanced discharging, especially when each battery has various local temperature differences. Increasing the cell number will reduce the unbalanced discharging and the reduction will be insignificant when the improvement of cooling performance becomes slight with the convective heat transfer coefficient increasing. The results are helpful to the design of cooling configurations, cooling control strategy and equalization method. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据