4.6 Article

Laccase and catecholoxidase activities contribute to innate immunity in slipper limpets, Crepidula fornicata

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.dci.2020.103724

关键词

Phenoloxidase; Innate immunity; Gastropod; Melanogenesis; Invasive species; Lipofuscin; Haemocyanin

资金

  1. European Regional Development Fund through the Ireland-Wales Cooperation programme, BLUEFISH
  2. Swansea University startup funds
  3. BLUEFISH innovation bursary
  4. College of Science (Swansea University) doctoral training grant

向作者/读者索取更多资源

The slipper limpet Crepidula fornicata is an invasive, non-native, marine species found throughout the coastal waters of southern England and Wales, UK. These limpets are considered to blight commercial shellfish banks, notably oysters, yet little is known about their disease-carrying capacity or their immunobiology. To address the latter, we isolated haemolymph (blood) from limpets and tested for the presence of the immune-enzyme phenoloxidase. Invertebrate phenoloxidases produce melanic polymers from simple phenolic substrates, which are deployed in the presence of pathogens because of their potent microbicidal and microbiostatic properties. We used a series of established substrates (e.g., tyrosine, hydroquinone) and inhibitors (e.g., 4-hexylresorcinol, benzoic acid) to target three distinct enzymes: laccase (para-diphenoloxidase), catecholoxidase (ortho-diphenoloxidase) and tyrosinase (monophenoloxidase). We confirmed laccase and catecholoxidase activities and characterised their kinetic properties across temperature and pH gradients (5-70 degrees C and 5-10, respectively). Crucially, we demonstrated that products derived from such laccase and catecholoxidase activities reduced significantly the numbers of colony-forming units of both Gram-positive and Gram-negative bacteria in vitro. We further screened limpet tissues for signs of melanin using wax histology, and found cells replete with eumelanin-like pigments and lipofuscin in the digestive gland, connective tissues, barrier epithelia and gills. Our data represent the first account of enzyme-based antibacterial defences, notably laccase, in C. fornicata.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据