4.7 Article

Self-sensing behavior and mechanical properties of carbon nanotubes/epoxy resin composite for asphalt pavement strain monitoring

期刊

CONSTRUCTION AND BUILDING MATERIALS
卷 257, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2020.119404

关键词

Strain sensor; Nanocomposites; Pavement monitoring; Micro-strain; Carbon nanotubes/polymer

资金

  1. National Natural Science Foundation of China [51908330]
  2. China Postdoctoral Science Foundation [2019T120590, 2018M640630]
  3. State Key Laboratory of Special Functional Waterproof Materials [SKLW2019013]

向作者/读者索取更多资源

The monitoring of pavement structure conditions, especially the parameters of strain, stress, etc, plays a crucial rule on the design, construction, service and maintenance of asphalt road. In recent years, sensing composite materials provide a new approach for technological innovation of strain sensors and the engineering structure monitoring, which can effectively adapt to complex construction and working environment. In this paper, aligned multiwall carbon nanotubes (MWCNTs) with excellent electrical conductivity of >1250 s/cm is used to prepare the epoxy matrix composites. The effect of varying percent of CNT on the mechanical, electrical, morphological and fatigue properties of epoxy/nanotube composites was evaluated. Based on these evaluations, a novel strain sensor that can effectively detect the strain range within 1000 and even 100 mu epsilon with high durability (more than 100,000 cycles at 1000 mu epsilon), repeatability and prompt response was developed for asphalt pavement strain monitoring. The results indicated that the best gauge factor of the developed sensor is up to 26.04, which is far higher than traditional metal strain sensors with gauge factor of 2. Mechanical properties of different stiffness can be adjusted by mixing CNTs amount, so as to accord with the modulus range of different pavement layer. Morphology analysis of CNT revealed that the variation of electrical resistance as a function of strain is mainly attributed to the deformation of 3D conductive structure, which is further affected by the variation of conductive path and tunnel conduction effect. Consequently, the results in the study provide a new pathway on the development of micro-strain monitoring sensors for asphalt pavement structure. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据