4.7 Article

Influence of sample preparation techniques on microstructure and nano-mechanical properties of steel-concrete interface

期刊

CONSTRUCTION AND BUILDING MATERIALS
卷 256, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2020.119242

关键词

Steel concrete interface; Sample preparation technique; Microstructure; Porous zone thickness; Nano-mechanical properties

资金

  1. Department of Science and Technology, Science and Engineering Research Board [EMR/2017/002535]
  2. Government of India

向作者/读者索取更多资源

Interface between steel and concrete is characterized as highly porous and weakest region which influences both mechanical properties and durability of a reinforced concrete structure. The properties of the steel-concrete interface (SCI), especially the porous zone thickness are prime factors in predicting the time for corrosion initiation to corrosion cracking in service life prediction models. Measurement of porous zone thickness of reinforced concrete samples is sensitive to the sample preparation technique for microscopic observations. It is observed that there are hardly any research articles are available in the literature regarding the sample preparation technique of reinforced concrete sample for SCI analysis. In the present study, a detailed and stepwise sample preparation technique is proposed where there is minimal damage found to be observed to SCI. The major focus is on the speed of cutting tool that is being used for obtaining a relatively small size of sample from the bulk reinforced concrete member. The properties such as porous zone thickness and nano mechanical properties around the SCI were determined through scanning electron microscopy and nano-indentation, respectively. A significant variation in porous zone thickness around SCI was observed and measured value of average porous zone thickness is found to be approximately 1.8 times higher from high-speed cutting to low-speed. A similar kind of observation was noticed for nano mechanical properties. In addition to speed of cutting, there found to be other factors such as pressing force for specimen, duration of polishing and heating temperature has significant influence on interfacial properties. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据