4.7 Article

Development and validation of a finite deformation fibre kinking model for crushing of composites

期刊

COMPOSITES SCIENCE AND TECHNOLOGY
卷 197, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compscitech.2020.108236

关键词

Finite element analysis (FEA); Modelling; Damage mechanics; Crack

资金

  1. Swedish Energy Agency [34181-2]
  2. FFI/Vinnova [2016-04239]
  3. Vinnova's strategic innovation programme LIGHTer (via LIGHTer Academy project) [201705200]

向作者/读者索取更多资源

A mesoscale model for fibre kinking onset and growth in a three-dimensional framework is developed and validated against experimental results obtained in-house as well as from the literature. The model formulation is based on fibre kinking theory i.e. the initially misaligned fibres rotate due to compressive loading and nonlinear shear behaviour. Furthermore, the physically-based response is computed in a novel and efficient way using finite deformation theory. The model validation starts by correlating the numerical results against compression tests of specimens with a known misalignment. The results show good agreement of stiffness and strength for two specimens with low and high misalignment. Fibre kinking growth is validated by simulating the crushing of a flat coupon with the fibres oriented to the load direction. The numerical results show very good agreement with experiments in terms of crash morphology and load response.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据