4.7 Article

Effect and mechanism of PI3K/AKT/mTOR signaling pathway in the apoptosis of GC-1 cells induced by nickel nanoparticles

期刊

CHEMOSPHERE
卷 255, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.126913

关键词

Nickel nanoparticles; GC-1 cells; Toxicity; Apoptosis; PI3K/AKT/mTOR signaling pathway

资金

  1. National Natural Science Foundation of China [81502783, 21876026, 31671034]

向作者/读者索取更多资源

Nickel nanoparticles (Ni NPs) have a wide range of application prospects, but there is still a lack of their safety evaluation for the reproductive system. Nowadays, male reproductive health has been widely concerned because of the increasing incidence of male infertility. Studies have shown that Ni NPs can cause male reproductive toxicity. The purpose of this study was to investigate the toxicity of Ni NPs on GC-1 cells, a mouse spermatogonia cell line, and to explore the possible mechanism underlying the induction of apoptosis via PI3K/AKT/mTOR signaling pathway. The cell ultrastructure was firstly observed under a transmission electron microscope. Then, cell proliferation, cycle and apoptosis were detected by CCK-8 and flow cytometry, respectively. Furthermore, the expression levels of related proteins and genes were determined by Western blot and Reverse transcription-polymerase chain reaction, respectively. The results showed that Ni NPs could not only cause changes in cell ultrastructure, decreased survival rate and arrested G1 phase cell cycle, but also activated apoptosis pathway by inhibiting the PI3K/AKT/mTOR signaling pathway. The results of this study provide novel insights to explore the mechanisms of reproductive toxicity of Ni NPs and are of great significance to develop safety evaluation criteria for Ni NPs. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据