4.7 Article

Gender-differentiated metabolic abnormalities of adult zebrafish with zinc pyrithione (ZPT) -induced hepatotoxicity

期刊

CHEMOSPHERE
卷 257, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.127177

关键词

Zinc pyrithione; 2, 4-diaminobutyric acid; Genderdifferentiated; Hepatotoxicity; GC-MS

资金

  1. National Natural Science Foundation of China [31701279]
  2. Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture [XTE-1845]

向作者/读者索取更多资源

Zinc pyrithione (ZPT) is an extensively used microbicidal agent and its toxicity to multiple organs has been gradually recognized. However, details of the mechanism of ZPT toxicity are lacking and profile studies at metabolic level are still greatly limited. In this work we investigated the effects of ZPT on metabolic pathways of zebrafish liver after twenty-one days of exposure. Our integrated approach was underpinned by gas chromatography coupled with mass spectroscopy (GC-MS) and liver function analysis. Metabolomic profiles were generated from the livers of ZPT-treated zebrafish and 172 significantly altered metabolite peaks were detected. As a result, ZPT caused altered perturbation of metabolic pathways in male and female zebrafish liver. Moreover, ZPT induced the liver injury with the changes of the metabolites 2,4-diaminobutyric acid (2,4-DABA) with significant distinction between male and female zebrafish. ZPT caused gender-differentiated liver metabolic changes associated with the disruption of glycogenolysis and glycolysis metabolism, purine and pyrimidine metabolism, oxidative phosphorylation, arginine biosynthesis, and amino acid metabolism. Conclusively, exposure of ZPT may result in gender-differentiated metabolic abnormalities of adult zebrafish with induced hepatotoxicity. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据