4.5 Article

Deletion of bglC triggers a genetic compensation response by awakening the expression of alternative beta-glucosidase

出版社

ELSEVIER
DOI: 10.1016/j.bbagrm.2020.194615

关键词

Genetic compensation; Paradoxical phenotype; Enzyme expression control; Transcription awakening; Beta-glucosidase

资金

  1. Aspirant grants from the FNRS [1.A618.18]
  2. FNRS [T.0006.14-PDR]
  3. Agriculture and Food Research Initiative Competitive Grants Program (US Department of Agriculture's National Institute of Food and Agriculture) [2010-65110-20416]
  4. Bijzonder Onderzoeksfonds (BOF) [01B08915]
  5. NIFA [581229, 2010-65110-20416] Funding Source: Federal RePORTER

向作者/读者索取更多资源

In the plant pathogen Streptomyces scabies, the gene bglC encodes a GH1 family cellobiose beta-glucosidase that is both required for primary metabolism and for inducing virulence of the bacterium. Deletion of bglC (strain Delta bglC) surprisingly resulted in the augmentation of the global beta-glucosidase activity of S. scabies. This paradoxical phenotype is highly robust as it has been observed in all bglC deletion mutants independently generated, thereby highlighting a phenomenon of genetic compensation. Comparative proteomics allowed to identify two glycosyl hydrolases - named BcpE1 and BcpE2 - of which peptide levels were significantly increased in strain Delta bglC. Quantitative RT-PCR revealed that the higher abundance of BcpE1 and BcpE2 is triggered at the transcriptional level, the expression of their respective gene being 100 and 15 times upregulated. Enzymatic studies with pure BcpE proteins showed that they both possess beta-glucosidase activity thereby explaining the genotypic-phenotypic discrepancy of the bglC deletion mutant. The GH1 family BcpE1 could hydrolyze cellobiose and generate glucose similarly to BglC itself thereby mainly contributing to the survival of strain Delta bglC when cellobiose is provided as sole nutrient source. The low affinity of BcpE2 for cellobiose suggests that this GH3 family beta-glucosidase would instead primarily target another and yet unknown glucose-beta-1,4-linked substrate. These results make S. scabies a new model system to study genetic compensation. Discovering how, either the bglC DNA locus, its mRNA, the BglC protein, or either its enzymatic activity controls bcpE genes' expression, will unveil new mechanisms directing transcriptional repression.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据