4.7 Article

Mist cooling in urban spaces: Understanding the key factors behind the mitigation potential

期刊

APPLIED THERMAL ENGINEERING
卷 178, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2020.115644

关键词

Water misting; Experimental monitoring; Urban climate; Evaporative cooling; Sensitivity analysis; Artificial intelligence

资金

  1. Italian national agency for new technologies, energy and sustainable economic development (ENEA)

向作者/读者索取更多资源

Mist cooling is a widely known and applied heat mitigation technology, especially in urban settings. Despite this, conceiving the right installation is no trivial matter as scattered and unstandardized is the knowledge on the multiple interrelations with the local microclimate. This paper investigates how the cooling efficiency of a dry mist system depends on the local meteorological trends. An experimental system of 24 overhead nozzles constantly operating at 0.7 MPa, was installed in Italy and monitored for a week in summertime. Temperature and relative humidity underneath the mist were mapped in five locations with a time step of 10 s, together with the main meteorological parameters, measured at an undisturbed location, for reference. Cooling and humidification capacity were characterized as probability density, key summary statistics and relevant confidence intervals with minimal redundancy and minimal distortion. A supervised learning algorithm was used to disclose the sensitivity of the recorded temperature drop to the contextual microclimatic evolution. It was demonstrated that the cooling capacity of the tested system was largely a function of the local wet bulb depression, as instantaneous reading as well as short-term trend. Additionally, solar irradiation and wind speed were found to be negatively and positively correlated, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据