4.6 Article

Iridium complexes with a new type ofN∧N′-donor anionic ligand catalyze theN-benzylation of amines via borrowing hydrogen

期刊

APPLIED ORGANOMETALLIC CHEMISTRY
卷 34, 期 12, 页码 -

出版社

WILEY
DOI: 10.1002/aoc.6003

关键词

amines; benzylation; borrowing hydrogen; hydantoin; iridium; transfer hydrogenation

资金

  1. FEDER funds [2014/10340]
  2. Plan Propio de I+D+i-UCLM [2014/10340]
  3. Junta de Castilla y Leon [BU087G19]
  4. Ministerio de Ciencia, Innovacion y Universidades [RED2018-102471-T, RTI2018-100709-B-C21]

向作者/读者索取更多资源

The development of efficient and eco-friendly methods for the synthesis of elaborate amines is highly desired as they are valuable chemicals. The catalytic alkylation of amines using alcohols as alkylating agents, through the so-called borrowing hydrogen process, satisfies several of the principles of green chemistry. In this paper, four neutral half-sandwich complexes of Ru(II), Rh(III), and Ir(III) have been synthesized and tested as catalysts in theN-benzylation of amines with benzyl alcohol. The new derivatives contain aN(boolean AND)N ' anionic ligand derived from 5-(pyridin-2-ylmethylene)hydantoin (Hpyhy) that has never been tested in metal complexes with catalytic applications. In particular, the Ir derivatives, [(Cp*)IrX(pyhy)] (X = Cl or H), exhibit high activity along with good selectivity in the process. Indeed, the scope of the optimized protocol has been proved in the benzylation of several primary and secondary amines. The selectivity towards monoalkylated or dialkylated amines has been tuned by adjusting the amine:alcohol ratio and the reaction time. Experimental results support a mechanism consisting of three consecutive steps, two of which are Ir catalyzed, and a favorable condensation step without the assistance of the catalyst. Moreover, an unproductive competitive pathway can operate when the reaction is performed in open-air vessels, due to the irreversible release of H-2. This route is hampered when the reaction is carried out in close vessels, likely because the release of H(2)is reversed through metal-based heterolytic cleavage. From our viewpoint, these results show the potential of the new catalysts in a very attractive and promising methodology for the synthesis of amines.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据