4.7 Article

Strain-induced multivariant martensitic transformations: A scale-independent simulation of interaction between localized shear bands and microstructure

期刊

ACTA MATERIALIA
卷 196, 期 -, 页码 430-443

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2020.06.059

关键词

Martensitic phase transformation; Polycrystal plasticity modeling; Strain softening; Shear bands; Contact problem

资金

  1. NSF [CMMI-1943710, MMN-1904830]
  2. ARO [W911NF-17-1-0225]
  3. ONR [N00014-16-1-2079]
  4. ISU (Vance Coffman Faculty Chair Professorship)

向作者/读者索取更多资源

A scale-independent model for the interaction between multivariant phase transformations (PTs) and discrete shear bands is advanced and utilized to simulate plastic strain-induced PTs at high pressure. The model includes a scale-free phase-field theory for martensitic PTs. The localized shear bands are introduced via a contact problem formulation. That is, the continuous distribution of sliding displacements along the prescribed slip surfaces is modeled to reproduce the plastic-strain-induced stress concentrators necessary for nucleation of a high-pressure phase (HPP). The strain-induced PTs in the bi/polycrystalline samples subjected to compression and shear are studied. The simulations show a severe reduction in the PT pressure by the plastic shear in comparison to a hydrostatic condition, even below the phase equilibrium pressure, like in known experiments. Transformation kinetics versus shear strain for each martensitic variant and the volume fraction of the HPP in individual grains and the entire aggregate are determined. The stationary volume fraction of the HPP is the same for polycrystals consisting of 13 and 38 grains, and a further shearing does not cause PT. The local phase equilibrium condition based on the transformation-work criterion is satisfied at almost all stationary phase interfaces. A similar phase equilibrium condition in terms of stresses averaged over the entire polycrystal or HPP is fulfilled. These results are important for the development of the microscale kinetic equations and modeling the sample behavior in traditional and rotational diamond anvils during the high-pressure torsion, ball milling, friction, and other deformation-transformation processes. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Materials Science, Multidisciplinary

An exact formulation for exponential-logarithmic transformation stretches in a multiphase phase field approach to martensitic transformations

Anup Basak, Valery Levitas

MATHEMATICS AND MECHANICS OF SOLIDS (2020)

Article Chemistry, Physical

Fifth-degree elastic energy for predictive continuum stress-strain relations and elastic instabilities under large strain and complex loading in silicon

Hao Chen, Nikolai A. Zarkevich, Valery I. Levitas, Duane D. Johnson, Xiancheng Zhang

NPJ COMPUTATIONAL MATERIALS (2020)

Article Materials Science, Multidisciplinary

In situ quantitative study of plastic strain-induced phase transformations under high pressure: Example for ultra-pure Zr

K. K. Pandey, Valery I. Levitas

ACTA MATERIALIA (2020)

Article Materials Science, Multidisciplinary

Stationary dislocation motion at stresses significantly below the Peierls stress: Example of shuffle screw and 60° dislocations in silicon

Hao Chen, Valery Levitas, Liming Xiong, Xiancheng Zhang

Summary: The stationary motion of shuffle screw and 60 degrees dislocations in silicon under applied shear below the static Peierls stress has been proven through molecular dynamics simulations and continuum-level equation of motion. The concept of a dynamic Peierls stress below which stationary dislocation motion is impossible is established. The results suggest the potential for dynamic intensification of plastic flow and defects accumulations below the static Peierls stress.

ACTA MATERIALIA (2021)

Article Physics, Applied

Displacement field measurements in traditional and rotational diamond anvil cells

K. K. Pandey, Valery I. Levitas

Summary: A novel method using digital image correlation and ruby fluorescence microscopy has been developed to measure displacement fields in traditional diamond anvil cells and rotational DACs, providing crucial data for material property research.

JOURNAL OF APPLIED PHYSICS (2021)

Article Materials Science, Multidisciplinary

Coupled large-strain mechanochemical theory for solid-state reaction with application to oxidation

Hamed Attariani, I. Valery Levitas

Summary: Oxidation is still a significant challenge in various industrial applications due to its coupled multi-physics nature. A general large-strain mechanochemical theory was developed to model anisotropic reaction/compositional strain, introducing a kinetic relationship between deviatoric reaction deformation rate and stress. The new model showed that deviatoric stress alters the chemical equilibrium constant and reaction rate through reaction-induced deviatoric stress.

ACTA MATERIALIA (2021)

Article Multidisciplinary Sciences

Nontrivial nanostructure, stress relaxation mechanisms, and crystallography for pressure-induced Si-I → Si-II phase transformation

Hao Chen, Valery Levitas, Dmitry Popov, Nenad Velisavljevic

Summary: The unexpected nanostructure evolution during Si-I -> Si-II phase transformation is revealed by combining molecular dynamics, crystallographic theory, and in situ real-time Laue X-ray diffraction. This phase transformation results in twinned Si-II and unexpected nanobands, which form specific interfaces with Si-I and create self-accommodated nanostructure.

NATURE COMMUNICATIONS (2022)

Editorial Material Thermodynamics

On the occasion of the anniversary of Professor Vladimir An. Levin

Francesco Dell'Isola, Valery I. Levitas, Valery P. Matveenko

CONTINUUM MECHANICS AND THERMODYNAMICS (2023)

Article Multidisciplinary Sciences

Resolving puzzles of the phase-transformation-based mechanism of the strong deep-focus earthquake

Valery Levitas

Summary: This study presents a developed theory that explains the puzzles of deep-focus earthquakes, including the coupled deformation, plastic strain-induced phase transformation, transformation-induced plasticity, and self-blown-up deformation-transformation-heating process in shear bands. By considering the transformation in olivine as plastic strain-induced and finding an analytical solution for the coupled deformation-transformation-heating process in shear bands, the study provides insights into the mechanisms behind the jump in strain rates and sudden transformation of metastable olivine. The study also highlights the importance of the thermomechanochemical feedback in the severe transformation-induced plasticity and self-blown-up deformation-transformation-heating process.

NATURE COMMUNICATIONS (2022)

Article Thermodynamics

A multiphase phase-field study of three-dimensional martensitic twinned microstructures at large strains

Anup Basak, Valery I. Levitas

Summary: This paper revisits the nanoscale multiphase phase-field model for stress and temperature-induced multivariant martensitic transformation under large strains developed by the authors. It resolves the issues related to the gradient energy and coupled kinetic equations and develops a thermodynamically consistent model. The model considers N + 1 order parameters to describe austenite and N martensitic variants, taking into account the energies of the interfaces and a kinetic relationship for the rate of the order parameters. A large strain-based finite element method is used to simulate a 3D complex twins within twins microstructure, and a comparative study is presented.

CONTINUUM MECHANICS AND THERMODYNAMICS (2023)

Article Multidisciplinary Sciences

Tensorial stress-plastic strain fields in α - ω Zr mixture, transformation kinetics, and friction in diamond-anvil cell

Valery I. Levitas, Achyut Dhar, K. K. Pandey

Summary: This study investigates the effects of stress and plastic strain tensors on various phenomena under high pressures in diamond-anvil cells. The authors suggest a coupled experimental-analytical-computational approach to measure these tensors and friction rules in the material using synchrotron X-ray diffraction. The results are in good agreement with experiments and open opportunities for quantitative high-pressure/stress science.

NATURE COMMUNICATIONS (2023)

Article Materials Science, Multidisciplinary

Nonlinear elasticity of prestressed single crystals at high pressure and various elastic moduli

Valery Levitas

Summary: This paper introduces a general nonlinear theory for the elasticity of prestressed single crystals, defining various elastic moduli and their relationships. It also outlines possible applications to complex nonlinear elasticity problems and illustrates them for a superdislocation. The importance of B moduli in computational algorithms and the analysis of finite rotations are highlighted.

PHYSICAL REVIEW B (2021)

Article Materials Science, Multidisciplinary

Transmission electron microscopy of the rapid solidification microstructure evolution and solidification interface velocity determination in hypereutectic Al-20at.%Cu after laser melting

Y. Liu, K. Zweiacker, C. Liu, J. T. McKeown, J. M. K. Wiezorek

Summary: The evolution of rapid solidification microstructure and solidification interface velocity of hypereutectic Al-20at.%Cu alloy after laser melting has been studied experimentally. It was found that the formation of microstructure was dominated by eutectic, alpha-cell, and banded morphology grains, and the growth modes changed with increasing interface velocity.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Mechanisms for high creep resistance in alumina forming austenitic (AFA) alloys

Bharat Gwalani, Julian Escobar, Miao Song, Jonova Thomas, Joshua Silverstein, Andrew Chihpin Chuang, Dileep Singh, Michael P. Brady, Yukinori Yamamoto, Thomas R. Watkins, Arun Devaraj

Summary: Castable alumina forming austenitic alloys exhibit superior creep life and oxidation resistance at high temperatures. This study reveals the mechanism behind the enhanced creep performance of these alloys by suppressing primary carbide formation and offers a promising alloy design strategy for high-temperature applications.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Achieving atomically flat copper surface: Formation of mono-atomic steps and associated strain energy mechanisms

Jian Song, Qi Zhang, Songsong Yao, Kunming Yang, Houyu Ma, Jiamiao Ni, Boan Zhong, Yue Liu, Jian Wang, Tongxiang Fan

Summary: Recent studies have shown that achieving an atomically flat surface for metals can greatly improve their oxidation resistance and enhance their electronic-optical applications. Researchers have explored the use of graphene as a covering layer to achieve atomically flat surfaces. They found that high-temperature deposited graphene on copper surfaces formed mono-atomic steps, while annealed copper and transferred graphene on copper interfaces formed multi-atomic steps.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Modeling and measurements of creep deformation in laser-melted Al-Ti-Zr alloys with bimodal grain size

Jennifer A. Glerum, Jon-Erik Mogonye, David C. Dunand

Summary: Elemental powders of Al, Ti, Sc, and Zr are blended and processed via laser powder-bed fusion to create binary and ternary alloys. The microstructural analysis and mechanical testing show that the addition of Ti results in the formation of primary precipitates, while the addition of Sc and Zr leads to the formation of fine grain bands. The Al-0.25Ti-0.25Zr alloy exhibits comparable strain rates to Al-0.5Zr at low stresses, but significantly higher strain rates at higher stresses during compressive creep testing. Finite element modeling suggests that the connectivity of coarse and fine grain regions is a critical factor affecting the creep resistance of the alloys.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Characterizing stable nanocrystalline Cu-Ta behavior and failure dynamics under extremes of strain rate, strain, temperature and pressure by modified dynamic tensile extrusion

P. Jannotti, B. C. Hornbuckle, J. T. Lloyd, N. Lorenzo, M. Aniska, T. L. Luckenbaugh, A. J. Roberts, A. Giri, K. A. Darling

Summary: This work characterizes the thermo-mechanical behavior of bulk nanocrystalline Cu-Ta alloys under extreme conditions. The experiments reveal that the alloys exhibit unique mechanical properties, behaving differently from conventional nanocrystalline Cu. They do not undergo grain coarsening during extrusion and exhibit behavior similar to coarse-grained Cu.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Phase-dependent microstructure modification leads to high thermoelectric performance in n-type layered SnSe2

Yiqing Wei, Jingwei Li, Daliang Zhang, Bin Zhang, Zizhen Zhou, Guang Han, Guoyu Wang, Carmelo Prestipino, Pierric Lemoine, Emmanuel Guilmeau, Xu Lu, Xiaoyuan Zhou

Summary: This study proposes a new strategy to modify microstructure by phase regulation, which can simultaneously enhance carrier mobility and reduce lattice thermal conductivity. The addition of Cu in layered SnSe2 induces a phase transition that leads to increased grain size and reduced stacking fault density, resulting in improved carrier mobility and lower lattice thermal conductivity.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Selective oxidation and nickel enrichment hinders the repassivation kinetics of multi-principal element alloy surfaces

Jia Chen, Zhengyu Zhang, Eitan Hershkovitz, Jonathan Poplawsky, Raja Shekar Bhupal Dandu, Chang-Yu Hung, Wenbo Wang, Yi Yao, Lin Li, Hongliang Xin, Honggyu Kim, Wenjun Cai

Summary: In this study, the structural origin of the pH-dependent repassivation mechanisms in multi-principal element alloys (MPEA) was investigated using surface characterization and computational simulations. It was found that selective oxidation in acidic to neutral solutions leads to enhanced nickel enrichment on the surface, resulting in reduced repassivation capability and corrosion resistance.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Rate-dependent transition of dislocation mechanisms in a magnesium alloy

X. Y. Xu, C. P. Huang, H. Y. Wang, Y. Z. Li, M. X. Huang

Summary: The limited slip systems of magnesium (Mg) and its alloys hinder their wide applications. By conducting tensile straining experiments, researchers discovered a rate-dependent transition in the dislocation mechanisms of Mg alloys. At high strain rates, glissile dislocations dominate, while easy-glide dislocations dominate at low strain rates. Abundant glissile dislocations do not necessarily improve ductility.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

The effect of temperature on detwinning and mechanical properties of face-centered cubic deformation twins

M. S. Szczerba, M. J. Szczerba

Summary: Inverse temperature dependences of the detwinning stress were observed in face-centered cubic deformation twins in Cu-8at.%Al alloy. The detwinning stress increased with temperature when the pi detwinning mode was involved, but decreased when the pi/3 mode was involved. The dual effect of temperature on the detwinning stress was due to the reduction of internal stresses pre-existing within the deformation twins. The complete reduction of internal stresses at about 530 degrees C led to the equivalence of the critical stresses of different detwinning modes and a decrease in the yield stress anisotropy of the twin/matrix structure.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Nature of the electric double layer to modulate the electrochemical behaviors of Fe2O3 electrode

Taowen Dong, Tingting Qin, Wei Zhang, Yaowen Zhang, Zhuoran Feng, Yuxiang Gao, Zhongyu Pan, Zixiang Xia, Yan Wang, Chunming Yang, Peng Wang, Weitao Zheng

Summary: The interaction between the electrode and the electric double layer (EDL) significantly influences the energy storage mechanism. By studying the popular alpha-Fe2O3 electrode and the EDL interaction, we find that the energy storage mechanism of the electrode can be controlled by modulating the EDL.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Grain scale bursts of plasticity in Mg-4Zn via high energy X-rays: Towards twin observation in real-time

Matthew R. Barnett, Jun Wang, Sitarama R. Kada, Alban de Vaucorbeil, Andrew Stevenson, Marc Fivel, Peter A. Lynch

Summary: The elastic-plastic transition in magnesium alloy Mg-4.5Zn exhibits bursts of deformation, which are characterized by sudden changes in grain orientation. These bursts occur in a coordinated manner among nearby grains, with the highest burst rate observed at the onset of full plasticity. The most significant burst events are associated with twinning, supported by the observation of twinned structures using electron microscopy. The bursts are often preceded and followed by a stasis in peak movement, indicating a certain "birth size" for twins upon formation and subsequent growth at a later stage.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Atomistic simulations and machine learning of solute grain boundary segregation in Mg alloys at finite temperatures

Vaidehi Menon, Sambit Das, Vikram Gavini, Liang Qi

Summary: Understanding solute segregation thermodynamics is crucial for investigating grain boundary properties. The spectral approach and thermodynamic integration methods can be used to predict solute segregation behavior at grain boundaries and compare with experimental observations, thus aiding in alloy design and performance control.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Integrating abnormal thermal expansion and ultralow thermal conductivity into (Cd,Ni)2Re2O7 via synergy of local structure distortion and soft acoustic phonons

Feiyu Qin, Lei Hu, Yingcai Zhu, Yuki Sakai, Shogo Kawaguchi, Akihiko Machida, Tetsu Watanuki, Yue-Wen Fang, Jun Sun, Xiangdong Ding, Masaki Azuma

Summary: This study reports on the negative and zero thermal expansion properties of Cd2Re2O7 and Cd1.95Ni0.05Re2O7 materials, along with their ultra-low thermal conductivity. Through investigations of their structures and phonon calculations, the synergistic effect of local structure distortion and soft phonons is revealed as the key to achieving these distinctive properties.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Semi-automatic miniature specimen testing method to characterize the plasticity and fracture properties of metals

Thomas Beerli, Christian C. Roth, Dirk Mohr

Summary: A novel testing system for miniature specimens is designed to characterize the plastic response of materials for which conventional full-size specimens cannot be extracted. The system has an automated operation process, which reduces the damage to specimens caused by manual handling and improves the stability of the test results. The experiments show that the miniature specimens extracted from stainless steel and aluminum have high reproducibility, and the results are consistent with those of conventional-sized specimens. A correction procedure is provided to consider the influence of surface roughness and heat-affected zone caused by wire EDM.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

The effect of microstructure and film composition on the mechanical properties of linear antenna CVD diamond thin films

Rani Mary Joy, Paulius Pobedinskas, Nina Baule, Shengyuan Bai, Daen Jannis, Nicolas Gauquelin, Marie-Amandine Pinault-Thaury, Francois Jomard, Kamatchi Jothiramalingam Sankaran, Rozita Rouzbahani, Fernando Lloret, Derese Desta, Jan D'Haen, Johan Verbeeck, Michael Frank Becker, Ken Haenen

Summary: This study investigates the influence of film microstructure and composition on the Young's modulus and residual stress in nanocrystalline diamond thin films. The results provide insights into the mechanical properties and intrinsic stress sources of these films, and demonstrate the potential for producing high-quality nanocrystalline diamond films under certain conditions.

ACTA MATERIALIA (2024)