4.7 Article

ANN-Based Continual Classification in Agriculture

期刊

AGRICULTURE-BASEL
卷 10, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/agriculture10050178

关键词

similarity; metric; memory; deep learning

类别

资金

  1. Natural Science Program of Shihezi University [KX01230101]
  2. Shihezi University

向作者/读者索取更多资源

In the area of plant protection and precision farming, timely detection and classification of plant diseases and crop pests play crucial roles in the management and decision-making. Recently, there have been many artificial neural network (ANN) methods used in agricultural classification tasks, which are task specific and require big datasets. These two characteristics are quite different from how humans learn intelligently. Undoubtedly, it would be exciting if the models can accumulate knowledge to handle continual tasks. Towards this goal, we propose an ANN-based continual classification method via memory storage and retrieval, with two clear advantages: Few data and high flexibility. This proposed ANN-based model combines a convolutional neural network (CNN) and generative adversarial network (GAN). Through learning of the similarity between input paired data, the CNN part only requires few raw data to achieve a good performance, suitable for a classification task. The GAN part is used to extract important information from old tasks and generate abstracted images as memory for the future task. Experimental results show that the regular CNN model performs poorly on the continual tasks (pest and plant classification), due to the forgetting problem. However, our proposed method can distinguish all the categories from new and old tasks with good performance, owing to its ability of accumulating knowledge and alleviating forgetting. There are so many possible applications of this proposed approach in the agricultural field, for instance, the intelligent fruit picking robots, which can recognize and pick different kinds of fruits; the plant protection is achieved by automatic identification of diseases and pests, which can continuously improve the detection range. Thus, this work also provides a reference for other studies towards more intelligent and flexible applications in agriculture.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据