4.7 Article

Non-disruptive collagen characterization in clinical histopathology using cross-modality image synthesis

期刊

COMMUNICATIONS BIOLOGY
卷 3, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s42003-020-01151-5

关键词

-

资金

  1. Semiconductor Research Corporation (SRC)
  2. Morgridge Institute for Research
  3. UW Carbone Cancer Center
  4. NIH [R01CA199996]

向作者/读者索取更多资源

The importance of fibrillar collagen topology and organization in disease progression and prognostication in different types of cancer has been characterized extensively in many research studies. These explorations have either used specialized imaging approaches, such as specific stains (e.g., picrosirius red), or advanced and costly imaging modalities (e.g., second harmonic generation imaging (SHG)) that are not currently in the clinical workflow. To facilitate the analysis of stromal biomarkers in clinical workflows, it would be ideal to have technical approaches that can characterize fibrillar collagen on standard H&E stained slides produced during routine diagnostic work. Here, we present a machine learning-based stromal collagen image synthesis algorithm that can be incorporated into existing H&E-based histopathology workflow. Specifically, this solution applies a convolutional neural network (CNN) directly onto clinically standard H&E bright field images to extract information about collagen fiber arrangement and alignment, without requiring additional specialized imaging stains, systems or equipment. Keikhosravi et al. utilises convolutional neural network (CNN) on standard H&E stained histology images to extract information about collagen fiber arrangement and alignment. Collagen images synthesized from CNN are very similar to true collagen maps produced via second harmonic generation (SHG) and other approaches.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据