4.6 Article

Molecular Fractionation in the Organic Materials of Source Rocks

期刊

ACS OMEGA
卷 5, 期 30, 页码 18968-18974

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.0c02239

关键词

-

资金

  1. KFUPM
  2. CPG

向作者/读者索取更多资源

Hydrocarbons that are transported in a hierarchal path from the nanoporous constituents of a shale matrix to natural and then hydraulic fractures are subject to continuous fractionation during the journey. The organic nanopores of a source rock matrix known as kerogen have pore sizes on the angstrom scale. At that degree of confinement, pores can act as a selective membrane, preferentially maintaining some components over the others in a continuous fractionation phenomenon that alters the adsorption/desorption isotherm. Several studies have considered the adsorption/desorption behavior of kerogen on the basis of a single component. In reality, methane is associated with other hydrocarbons, making that assumption questionable. The present work investigates the multicomponent gas sorption of kerogen structures via a molecular computational approach. The continuous fractionation results in the accumulation of heavier components. The compositional changes alter the phase behavior, enlarging the anticipated two-phase regime. Additionally, the ability of molecules to diffuse from kerogen was also found to be affected by the fractionation effect. These microscale effects provide some insights into the potential factors that influence the productivity at the reservoir scale.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据