4.7 Article

An Algorithm for an Online Electrochemical Impedance Spectroscopy and Battery Parameter Estimation: Development, Verification and Validation

期刊

JOURNAL OF ENERGY STORAGE
卷 30, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.est.2020.101517

关键词

Li-ion battery; Battery management system; Electrochemical impedance spectroscopy battery diagnostics; Electrical equivalent circuit model

资金

  1. European Unions Horizon 2020 research and innovation program under the grant Electric Vehicle Enhanced Range, Lifetime And Safety Through INGenious battery management [EVERLASTING 713771]

向作者/读者索取更多资源

More advanced battery diagnostic approaches are required for a safer and more reliable operation of today's and future battery technologies. For the purpose of evaluating a battery's internal conditions, Electrochemical impedance spectroscopy has proven to be a powerful tool, but nowadays it is only used in laboratory setups. It could provide valuable information about the battery's internal states, if instead it is applied online in an actual battery application. Therefore, we have developed an efficient algorithm, which is designed to run on a battery management system continuously carrying out measurements of the electrochemical impedance by iteratively evaluating measurements of battery current and voltage. Furthermore, the algorithm adapts the parameters of an equivalent circuit model to best match the battery's impedance, hence providing characteristic measures of a battery's internal conditions. The algorithm is implemented in a generic form, which severs as a baseline that can be adjusted to more specific requirements and circumstances in corresponding battery applications. The scope of this work focuses on an introduction of the generic algorithm as well as a proof-of-concept. The later was carried out in two steps. First, the algorithm was run against a battery model. Subsequently, the algorithm was validated utilizing measurements from a real battery cell. In this case, laboratory electrochemical impedance spectroscopy measurements served as reference. The algorithm was able to estimate impedance with a high accuracy in both tests. A high accuracy was also achieved for the parameter estimation; however, its accuracy decreases with large superposed DC current rates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据