4.7 Article

A multi-objective optimal design method for thermal energy storage systems with PCM: A case study for outdoor swimming pool heating application

期刊

JOURNAL OF ENERGY STORAGE
卷 29, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.est.2020.101371

关键词

Multi-objective optimization; Thermal energy storage; Phase change material; Outdoor swimming pool; Heating system

向作者/读者索取更多资源

Traditional design methods for thermal energy storage systems (TES) with phase change material (PCM) are mostly based on worst-case scenario, which causes too large size of main components. Current optimal design methods for these systems mainly focus on single optimization objective, which only satisfies the unilateral requirement. A multi-objective optimal design method for these systems is urgently needed, and therefore this paper remedies this knowledge gap. The response surface methodology is adopted to develop the surrogated models of the optimization objectives to improve the computational efficiency. Then, the non-dominated sorting genetic algorithm II is used to perform the double-objective and triple-objective optimization for acquiring the Pareto optimal solutions. Finally, the final decision-making methods that includes LINMAP and TOPSIS are adopted to identify the final optimal solutions. A case study of optimizing the design for an outdoor swimming pool (OSP) heating system with PCM storage tank, is conducted to illustrate the proposed approach. Eight final optimal solutions were identified, and the sp of the system in these solutions was 1.05, 1.24, 1.04, 1.22, 1.06, 1.06, 1.07, and 0.88 years, respectively. Results indicate that the proposed approach is effective to conduct the multi-objective optimization for the OSP heating systems and guide the design optimization for the TES systems with PCM.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据