4.3 Article

Stability of charged sulfur vacancies in 2D and bulk MoS2 from plane-wave density functional theory with electrostatic corrections

期刊

PHYSICAL REVIEW MATERIALS
卷 4, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevMaterials.4.064004

关键词

-

资金

  1. National Science Foundation through the 2DCC-MIP [DMR1539916]
  2. [DMR-1748464]
  3. [OAC-1740251]

向作者/读者索取更多资源

Two-dimensional (2D) semiconducting transition metal dichalcogenides such as MoS2 have attracted extensive research interests for potential applications in optoelectronics, spintronics, photovoltaics, and catalysis. To harness the potential of these materials for electronic devices requires a better understanding of how defects control the carrier concentration, character, and mobility. Utilizing a correction scheme developed by Freysoldt and Neugebauer to ensure the appropriate electrostatic boundary conditions for charged defects in 2D materials, we perform density functional theory calculations to compute formation energies and charge transition levels associated with sulfur vacancies in monolayer and layered bulk MoS2. We investigate the convergence of these defect properties with respect to vacuum spacing, in-plane supercell dimensions, and different levels of theory. We also analyze the electronic structures of the defects in different charge states to gain insights into the effect of defects on bonding and magnetism. We predict that both vacancy structures undergo a Jahn-Teller distortion, which helps stabilize the sulfur vacancy in the -1 charged state.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据