4.7 Article

Control, regulation and optimization of bidirectional energy flows for electric vehicles' charging and discharging

期刊

SUSTAINABLE CITIES AND SOCIETY
卷 57, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scs.2020.102129

关键词

Electric vehicles; Regulation; Optimization; Bidirectional; Energy flows; Electricity production and consumption

向作者/读者索取更多资源

Vehicular electrification plays a major role in the reduction of toxic greenhouse gas emissions linked to the transportation sector. However, the differential margin between electricity supply and demand is chaotic; and only a production/consumption balance could reconcile both ends. The adaptation of energy flows is therefore necessary to confront the gigantic energy waste related to electricity storage challenges. Consequently, electric vehicle batteries recently emerged as a solution to the actual limitation of storage capability. Indeed, they are used in this study as means of storage and retrieval of energy. Thus, this paper proposes a control and regulation algorithm aimed at reaching a balanced production/consumption system. The balance is acquired through the bidirectional control of the energy flows related to domestic residences, electric vehicles and the grid. Moreover, a multi-objective optimization of vehicular charging and discharging is assessed using the genetic algorithm to attain an optimal fulfillment of the system's energetic needs. Once the regulation algorithm is set and the optimizations implemented, the algorithm's simulation is performed using Matlab. Through the developed algorithm, we aim these major findings: 1. Regulate energy flows depending on supply and demand. 2. Optimize charging and discharging modes. 3. Flows merge towards the system's equilibrium state.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据