4.7 Article

Advanced glycation end products and protein carbonyl levels in plasma reveal sex-specific differences in Parkinson's and Alzheimer's disease

期刊

REDOX BIOLOGY
卷 34, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.redox.2020.101546

关键词

Advanced glycation end products; Protein carbonyls; Parkinson's diseases; Alzheimer's diseases; Oxidative stress; Neurodegeneration; Carboxyethyllysine; Carboxymethyllysine; Biomarker

资金

  1. German Federal Ministry of Education and Research (BMBF/ANR) through the EpiPD (Epigenomics of Parkinson's disease) project, under the auspices of the bilateral Epigenomics of Common and Age-related Diseases Programme [01KU1403B]

向作者/读者索取更多资源

Neurodegenerative diseases (NDD) such as Alzheimer's (AD) and Parkinson's disease (PD) are distinct clinical entities, however, the aggregation of key neuronal proteins, presumably leading to neuronal demise appears to represent a common mechanism. It has become evident, that advanced glycation end products (AGEs) trigger the accumulation of such modified proteins, which eventually contributes to pathological aspect of NDDs. Increased levels of AGEs are found in amyloid plaques in AD brains and in both advanced and early PD (incidental Lewy body disease). The molecular mechanisms by which AGE dependent modifications may modulate the susceptibility towards NDDs, however, remain enigmatic and it is unclear, whether AGEs may serve as biomarker of NDD. In the present study, we examined AGEs (CML: Carboxymethyllysine and CEL: Carboxyethyllysine), markers of oxidative stress and micronutrients in the plasma of PD and AD patients and controls. As compared to healthy controls, AD females displayed lower levels of CEL while higher levels of CML were found in AD and PD patients. A somewhat similar pattern was observed for protein carbonyls (PC), revealing lower values exclusively in AD females, whereas AD males displayed significantly higher values compared to healthy controls and PD. Sex-specific differences were also observed for other relevant markers such as malondialdehyde, 3-nitrotyrosine, gamma-tocopherols, retinol, plasma proteins and alpha-carotene, while alpha-tocopherols, beta-carotene, lutein/zeaxanthin, beta-cryptoxanthin and lycopene showed no relevant association. Taken together, our study suggests yet unappreciated differences of the distribution of AGEs among the sexes in NDD. We therefore suggest to make a clear distinction between sexes when analyzing oxidative (AGEs)-related stress and carbonyl-related stress and vitamins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据