4.7 Article

A Compost Treatment Acts as a Suppressive Agent inPhytophthora capsici - Cucurbita pepoPathosystem by Modifying the Rhizosphere Microbiota

期刊

FRONTIERS IN PLANT SCIENCE
卷 11, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2020.00885

关键词

Phytophthora capsici; Cucurbita pepo; compost; Trichoderma; soil metataxonomy; mycobiota

资金

  1. European Union's Horizon 2020 Research and Innovation Program [817946]

向作者/读者索取更多资源

Phytophthora capsiciLeonian (PHC) is a filamentous pathogen oomycete that causes root, fruit, foliar and crown rot over a wide host range, including the economically and nutritionally important summer squash (Cucurbita pepovar.cylindricaL.) crop. PHC chemical control strategies are difficult to adopt, due to the limited number of registered chemicals that are permitted and the scalar harvest system. For these reasons, other strategies, such as the use of waste-based composts that can act as suppressive agents against several soilborne pathogens, have been studied intensively. It is well known that compost's microbiota plays an important role to confer its suppressive ability. In this study, four different composts were analyzed with both 16S rRNA gene and 18S rRNA gene real-time PCR amplification and with 26S gene amplicon-based sequencing; the total abundance of the bacterial and fungal communities was found to be higher compared to literature, thus confirming that the four composts were a good inoculum source for agricultural applications. The core mycobiota was mainly composed of 31 genera; nevertheless, it was possible to observe a clear predominance of the same few taxa in all the composts. The four composts were then tested, at different concentrations (1-10-20% v/v), to establish their ability to confer suppressiveness to thePhytophthora capsici(PHC) -Cucurbita pepopathosystem in controlled greenhouse pot trials. A total of 12 compost mixtures were considered, and of these, one (Trichoderma-enriched compost at 10% v/v) was able to statistically reduce the disease incidence caused by PHC (by 50% compared to the untreated control). Hence, the microbiota composition of the most effective compost treatment was investigated and compared with untreated and chemical (metalaxyl) controls. Mycobiota sequencing showed genera differences between the three treatments, with relative abundances of several fungal genera that were significantly different among the samples. Moreover, PCA analyses clustered the compost treatment differently from the chemical and the untreated controls. These findings suggest that suppressive activity of a compost is strictly influenced by its microbiota and the applied dosage, but the ability to induce a shaping in the rhizosphere microbial composition is also required.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据