4.6 Article

Elimination of Fluorination: The Influence of Fluorine-Free Electrolytes on the Performance of LiNi1/3Mn1/3Co1/3O2/Silicon-Graphite Li-Ion Battery Cells

期刊

ACS SUSTAINABLE CHEMISTRY & ENGINEERING
卷 8, 期 27, 页码 10041-10052

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssuschemeng.0c01733

关键词

fluorine free; lithium-ion batteries full cell; silicon-graphite; solid electrolyte interphase; lithium bis(oxalate)borate

资金

  1. STandUP for Energy
  2. SiLiCoat (Swedish Energy Agency) [40466-1]
  3. Sintbat (European Union H2020 research and innovation programme) [685716]
  4. project CALIPSOplus (European Union H2020 research and innovation programme) [730872]

向作者/读者索取更多资源

In the quest for environmentally friendly and safe batteries, moving from fluorinated electrolytes that are toxic and release corrosive compounds, such as HF, is a necessary step. Here, the effects of electrolyte fluorination are investigated for full cells combining silicon- graphite composite electrodes with Li-Ni1/3Mn1/3Co1/3O2 (NMC111) cathodes, a viable cell chemistry for a range of potential battery applications, by means of electrochemical testing and postmortem surface analysis. A fluorine-free electrolyte based on lithium bis(oxalato) borate (LiBOB) and vinylene carbonate (VC) is able to provide higher discharge capacity (147 mAh g(NMC)(-1)) and longer cycle life at C/10 (84.4% capacity retention after 200 cycles) than a cell with a highly fluorinated electrolyte containing LiPF6, fluoroethylene carbonate (FEC) and VC. The cell with the fluorine-free electrolyte is able to form a stable solid electrolyte interphase (SEI) layer, has low overpotential, and shows a slow increase in cell resistance that leads to improved electrochemical performance. Although the power capability is limiting the performance of the fluorine-free electrolyte due to higher interfacial resistance, it is still able to provide long cycle life at C/2 and outperforms the highly fluorinated electrolyte at 40 degrees C. X-ray photoelectron spectroscopy (XPS) results showed a F-rich SEI with the highly fluorinated electrolyte, while the fluorine-free electrolyte formed an O-rich SEI. Although their composition is different, the electrochemical results show that both the highly fluorinated and fluorine-free electrolytes are able to stabilize the silicon-based anode and support stable cycling in full cells. While these results demonstrate the possibility to use a nonfluorinated electrolyte in high-energy-density full cells, they also address new challenges toward environmentally friendly and nontoxic electrolytes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据