4.7 Article

Fast Multiqubit Gates by Adiabatic Evolution in Interacting Excited-State Manifolds of Rydberg Atoms and Superconducting Circuits

期刊

PHYSICAL REVIEW X
卷 10, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevX.10.021054

关键词

-

资金

  1. Iran National Elites Foundation
  2. Villum Foundation
  3. U.S. ARL-CDQI program [W911NF-15-2-0061]

向作者/读者索取更多资源

Quantum computing and quantum simulation can be implemented by concatenation of one- and two-qubit gates and interactions. For most physical implementations, however, it may be advantageous to explore state components and interactions that depart from this universal paradigm and offer faster or more robust access to more advanced operations on the system. In this article, we show that adiabatic passage along the dark eigenstate of excitation exchange interactions can be used to implement fast multiqubit Toffoli (C-k-NOT) and fan-out (C-NOTk) gates. This mechanism can be realized by simultaneous excitation of atoms to Rydberg levels, featuring resonant exchange interaction. Our theoretical estimates and numerical simulations show that these multiqubit Rydberg gates are possible with errors below 1% for up to 20 qubits. The excitation exchange mechanism is ubiquitous across experimental platforms, and we show that similar multiqubit gates can be implemented in superconducting circuits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据