4.5 Article

High-Accuracy Approach for Thermomechanical Vibration Analysis of FG-Gplrc Fluid-Conveying Viscoelastic Thick Cylindrical Shell

期刊

出版社

WORLD SCIENTIFIC PUBL CO PTE LTD
DOI: 10.1142/S1758825120500738

关键词

Fluid-conveying shell; vibration; refined higher order shear deformation theory; temperature gradient; graphene-platelets reinforced composite

向作者/读者索取更多资源

High importance of fluid-conveying structures in multifarious engineering applications arises the necessity of enhancing the mechanical characteristics of these systems in an effective way. Accordingly, this paper is concerned with vibration performance of functionally graded graphene-platelets reinforced composite (FG-GPLRC) fluid-conveying viscoelastic cylindrical shell surrounded by two-parameter elastic substrate and exposed to temperature gradient and axial load within the context of refined higher order shear deformation theory (RHSDT) including trapezoidal shape factor. Generalized differential quadrature method (GDQM) is employed to solve differential equations of motion for different cases of boundary conditions. The fourth-order Runge-Kutta technique is utilized to determine the time response of the system. Validity of the results is verified through comparison with those presented in the published articles. Comprehensive parametric analysis is performed to reveal the impact of fluid-flow velocity, distribution patterns of GPL, different forms of applied temperature gradient, different boundary conditions, viscoelasticity coefficient, geometrical dimensions of the shell as well as graphene-sheets on the vibration of the system. The numerical results demonstrate that negative influence of applying compressive axial load and rising temperature gradient on the vibrational response of the system can be alleviated when the system is exposed to sinusoidal form of temperature rise with proper power-index.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据