4.8 Article

Efficient self-assembly of heterometallic triangular necklace with strong antibacterial activity

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-020-16940-z

关键词

-

资金

  1. NSFC/China [31870139]
  2. Innovation Program of Shanghai Municipal Education Commission [2019-01-07-00-05-E00012]
  3. Program for Changjiang Scholars and Innovative Research Team in University
  4. Shanghai Sailing Program [19YF1412900]
  5. Fundamental Research Funds for the Central Universities

向作者/读者索取更多资源

Sophisticated mechanically interlocked molecules (MIMs) with interesting structures, properties and applications have attracted great interest in the field of supramolecular chemistry. We herein report a highly efficient self-assembly of heterometallic triangular necklace 1 containing Cu and Pt metals with strong antibacterial activity. Single-crystal X-ray analysis shows that the finely arranged triangular necklace 1 has two racemic enantiomers in its solid state with intriguing packing motif. The superior antibacterial activity of necklace 1 against both standard and clinically drug-resistant pathogens implies that the presence of Cu(I) center and platinum(II) significantly enhance the bacterium-binding/damaging activity, which is mainly attributed to the highly positively charged nature, the possible synergistic effect of heterometals in the necklace, and the improved stability in culture media. This work clearly discloses the structure-property relationships that the existence of two different metal centers not only facilitates successful construction of heterometallic triangular necklace but also endows it with superior nuclease properties and antibacterial activities. Precise assembly of heterometallic complexes is a challenge. Here, the authors design a heterometallic triangular necklace through a highly efficient threading-and-ring-closing approach driven by metal-ligand coordination, which shows strong bacterium-binding and cell wall/plasma membrane-disrupting capacity for killing bacterial cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据