4.7 Article

Zinc fractions in soils and uptake in winter wheat as affected by repeated applications of zinc fertilizer

期刊

SOIL & TILLAGE RESEARCH
卷 200, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.still.2020.104612

关键词

Repeated Zn application; Soil Zn fractions; Zn uptake

资金

  1. National Natural Science Foundation of China [31672240]
  2. 973 Project [2015CB150402]
  3. Innovative Group Grant of National Natural Science Foundation of China [31421092]

向作者/读者索取更多资源

This field study was conducted to determine the effect of repeated zinc (Zn) applications at different rates on the concentrations and availability of different forms of Zn in the calcareous soil, in relationship to their contributions to Zn uptake by wheat. Plot-based field experiment was established in 2009 in a winter wheat-summer maize rotation. In each growing season of wheat and maize, six levels of Zn (0, 2.3, 5.7, 11.4, 22.7 and 34.1 kg Zn ha(-1)) as ZnSO4 center dot 7H(2)O were applied at planting. Following the harvest of the winter wheat in 2010, 2012, 2014 and 2016, soil samples (0-30 cm) from 5 selected Zn levels except 2.3 kg Zn ha(-1) were collected and subjected to a sequential extraction to examine the concentrations of Zn fractions including water soluble plus exchangeable Zn (Ex-Zn) and Zn as bounded to carbonate (Car-Zn), manganese oxide (MnO-Zn), iron oxide (FeO-Zn), or organic matter (OM-Zn), and residual (Res-Zn). Stepwise multiple regression was used to identify the contributions of each soil Zn fraction to variation in crop Zn uptake. The results showed that repeated Zn fertilization over the multiple years increased concentrations of all soil Zn fractions. However, the percentage of each Zn fraction to total Zn varied with Zn inputs. Increasing Zn input increased the percentages of Ex-, Carb-, MnO- and FeO-Zn to soil total Zn, whereas reduced that of OM- and Res-Zn. The FeO-, Ex-, and Res-Zn were selected by the stepwise regression procedure as the significant variables explaining the variation in wheat Zn uptake, with partial adjusted coefficient (R-2) of 0.81, 0.03 and 0.04, respectively. Crop Zn uptake also increased linearly with soil DTPA-extractable Zn and reached a maximum at DTPA-extractable Zn concentration of 12 mg kg(-1). In conclusion, repeated Zn fertilization increased the concentrations of Zn in exchangeable and adsorption forms, which in turn resulted in higher uptake of Zn by winter wheat. DTPA-extractable Zn is a good indicator of Zn availability for wheat. Fraction of FeO-Zn is an important Zn retention pool for determining crop uptake on the calcareous soil. These results emphasize the importance of Zn retention capacity in response to repeated application of Zn fertilizer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Soil Science

Determination of soil water retention curves from thermal conductivity curves, texture, bulk density, and field capacity

Lin Liu, Yili Lu, Robert Horton, Tusheng Ren

Summary: A new approach is presented in this study to estimate the parameters of the soil water retention curve (SWRC). The new method accurately estimates SWRCs by using measured thermal conductivity-water content curves, soil texture, bulk density, and field capacity water content.

SOIL & TILLAGE RESEARCH (2024)

Article Soil Science

Impacts of long-term organic manure inputs on cultivated soils with various degradation degrees

Zhongshan Dai, Yong Zhang, Yujie Wei, Chongfa Cai

Summary: This study investigates the effects of erosion degradation and long-term manure fertilization on soil properties and crop yield in Northeast China. Results show that erosion degradation and manure fertilization have lasting impacts on soil physical structure throughout the soil profile, while their effects on soil nutrient properties are focused in shallow layers. Manure fertilization significantly improves soil functional index (ISI) and maize yield for degraded soils. Erosion degradation has a greater influence on ISI and maize yield than manure fertilization.

SOIL & TILLAGE RESEARCH (2024)

Article Soil Science

Organic substitutions enhanced soil carbon stabilization and reduced carbon footprint in a vegetable farm

Xintong Xu, Ruiyu Bi, Mengxin Song, Yubing Dong, Ying Jiao, Bingxue Wang, Zhengqin Xiong

Summary: The substitution of organic fertilizers for inorganic fertilizers has a significant impact on soil organic carbon (SOC) and can help combat soil degradation and climate change in intensive vegetable production.

SOIL & TILLAGE RESEARCH (2024)

Article Soil Science

Wind erosion after steppe conversion in Kazakhstan

Moritz Koza, Roger Funk, Julia Poehlitz, Christopher Conrad, Olga Shibistova, Tobias Meinel, Kanat Akshalov, Gerd Schmidt

Summary: Semi-arid regions in Central Asia are experiencing wind erosion due to steppe conversion and unsustainable farming practices. A study conducted in Kazakhstan used a mobile wind tunnel to assess soil erodibility under real conditions. The results showed significant differences in soil erosion based on initial conditions and mechanical stress, emphasizing the importance of proper soil management to prevent severe events.

SOIL & TILLAGE RESEARCH (2024)

Article Soil Science

Crop diversification increases soil extracellular enzyme activities under no tillage: A global meta-analysis

Tong Li, Guorui Li, Zhiqiang Lu, Deqiang Zhao, Yuze Li, Ziting Wang, Xiaoxia Wen, Yuncheng Liao

Summary: Conservation agriculture with three management principles is effective in mitigating soil erosion and nutrient loss. This study found that no tillage significantly increased soil extracellular enzyme activities, while legume incorporation only had a significant effect on phosphorus-acquiring enzymes. Crop diversity positively influenced the no tillage-induced increase in enzyme activities.

SOIL & TILLAGE RESEARCH (2024)

Article Soil Science

Assessing soil structural quality as an indicator of productivity under semi-arid climate

Zahra Khasi, Mohammad Sadegh Askari, Setareh Amanifar, Kamran Moravej

Summary: This research aims to evaluate the applicability of visual soil evaluation methods for agricultural systems in semi-arid regions and assess the relationship between soil physical quality and crop yield. The results indicate that visual evaluation methods can effectively assess soil conditions, and optimal soil structural quality is crucial for sustainable crop production.

SOIL & TILLAGE RESEARCH (2024)

Article Soil Science

Comparative analysis of rhizobial and bacterial communities in experimental cotton fields: Impacts of conventional and conservation soil management in the Texas High Plains

Amin Jannatul Ferdous, Xiaolin Wang, Katie Lewis, John Zak

Summary: Conservative agricultural management strategies can enhance crop productivity by altering soil microbiome, and incorporating legumes into cover crops in semi-arid regions can improve the dynamics of rhizobial communities. There is a strong underlying relationship between soil management and bacterial diversity in the soil.

SOIL & TILLAGE RESEARCH (2024)

Article Soil Science

The impact of paleoclimatic on the structural strength of loess paleosol sequences and its implications for tillage on the Loess Plateau: A case study from Luochuan profile

Haiman Wang, Wankui Ni, Haisong Liu, Kangze Yuan

Summary: This study investigates the structural strength of the Loess-Paleosol Sequence (LPS) and finds that the strength tends to increase with burial depth, with the loess layer weaker than the paleosol layer. The microstructure of the LPS also undergoes significant transformations with increased burial depth, transitioning from an overhead structure to a matrix structure. These findings highlight the importance of climate conditions on the structural strength of the LPS.

SOIL & TILLAGE RESEARCH (2024)

Article Soil Science

Change in phosphorus availability, fractions, and adsorption-desorption by 46-years of long-term nutrient management in an Alfisol of eastern India

Ranabir Chakraborty, V. K. Sharma, Debarup Das, D. R. Biswas, P. Mahapatra, D. K. Shahi, M. Barman, K. A. Chobhe, D. Chakraborty

Summary: This study aimed to evaluate the impact of long-term nutrient management practices on P fractions and P adsorption-desorption behaviour of an acid soil with a soybean-wheat cropping system. The findings revealed that amorphous Fe and Al, which play a significant role in P fixation, increased due to cultivation. The NPK+Lime treatment offered the most balanced approach, improving both crop yield and P uptake while effectively managing P dynamics in the soil. On the contrary, long-term application of NPK+FYM in an acid soil may result in faster P saturation of adsorption sites and increase the chances of leaching and eutrophication. Tailored P fertilization strategies should be developed to better utilize the PFe and PAl fractions and supplementing applied P.

SOIL & TILLAGE RESEARCH (2024)

Article Soil Science

Enhancing soil carbon and nitrogen through grassland conversion from degraded croplands in China: Assessing magnitudes and identifying key drivers of phosphorus reduction

Yuan Li, Ying Li, Qingping Zhang, Gang Xu, Guopeng Liang, Dong-Gill Kim, Carmen Rosa Carmona, Mei Yang, Jianming Xue, Yangzhou Xiang, Bin Yao, Yuying Shen

Summary: Agricultural intensification has led to severe degradation of croplands in China. Converting degraded croplands to grasslands can increase soil organic carbon and nitrogen content, but may decrease soil pH and available phosphorus. The duration of conversion and mean annual precipitation are major factors influencing soil changes.

SOIL & TILLAGE RESEARCH (2024)

Article Soil Science

A new method for disentangling the coupling effect of slaking and mechanical breakdown on aggregate stability: Validation on splash erosion

Xinliang Wu, Sixu Yao, Jinxing Zhou

Summary: The coupling effect of slaking and mechanical breakdown on aggregate stability was evaluated using a new method. This method can partition the unique and shared effects of these two breakdown mechanisms and showed better performance in predicting soil erosion compared to existing methods.

SOIL & TILLAGE RESEARCH (2024)

Article Soil Science

Impacts of the soil pore structure on infiltration characteristics at the profile scale in the red soil region

Xinni Ju, Lei Gao, Dongli She, Yuhua Jia, Zhe Pang, Yaji Wang

Summary: This study linked soil pore structures quantified by X-ray computed tomography (CT) scanning and infiltration processes traced using stable hydrogen and oxygen isotopes under different land uses in the red soil region of southern China. The results showed that soil pore characteristics mainly affected soil water transport, while other soil properties played more important roles in soil water retention. CT-based porosity and soil texture were considered crucial indicators in the evaluation of water exchange during infiltration processes.

SOIL & TILLAGE RESEARCH (2024)

Article Soil Science

Impact of drought on terrestrial ecosystem C-N-P stoichiometry and microbial nutrient limitation

Hongwei Xu, Qing Qu, Jiaping Yang, Zhen Wang, Minggang Wang, Rentao Liu, Sha Xue

Summary: This study systematically analyzed the effects of drought on terrestrial ecosystem C-N-P stoichiometry on a global scale. The results showed that drought significantly decreased the C:N ratio in soil, enzymes, shoots, and roots. Soil microbes were limited by N, whereas plants were restricted by P under drought stress. Drought intensity and duration were negatively correlated with shoot N:P and vector angle.

SOIL & TILLAGE RESEARCH (2024)

Article Soil Science

Short-term effects of subsoil management by strip-wise loosening and incorporation of organic material

Sara L. Bauke, Sabine J. Seidel, Miriam Athmann, Anne E. Berns, Melanie Braun, Martina I. Gocke, Julien Guigue, Timo Kautz, Ingrid Koegel-Knabner, Juliette Ohan, Matthias Rillig, Michael Schloter, Oliver Schmittmann, Stefanie Schulz, David Uhlig, Andrea Schnepf, Wulf Amelung

Summary: Agricultural production in Central Europe is increasingly affected by extreme drought events. This study found that incorporating organic matter, especially biowaste compost, into the subsoil significantly increased root growth and subsequently improved crop nutrient uptake, biomass, and grain yield. The incorporation of green waste compost had less pronounced effects.

SOIL & TILLAGE RESEARCH (2024)

Article Soil Science

Loss and conservation of soil organic carbon and nutrients in arid and semiarid China during aeolian dust emissions

Xi Chen, Xuesong Wang

Summary: Based on the application of the integrated wind erosion modeling system, this study comprehensively simulated the loss and conservation of nutrients during aeolian dust emissions in the arid and semiarid areas of China. The results showed a decreasing trend in nutrient losses over the past two decades, with the ecosystems playing a crucial role in preventing these losses. The prevention rates of different land cover types were generally high, indicating the effectiveness of conservation measures.

SOIL & TILLAGE RESEARCH (2024)