4.7 Article

Spatial dependency of arsenic, antimony, boron and other trace elements in the shallow groundwater systems of the Lower Katari Basin, Bolivian Altiplano

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 719, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.137505

关键词

Hydrochemistry; Groundwater; Spatial variability; Lower Katari Basin; Bolivia; Trace elements

资金

  1. Swedish International Development Cooperation Agency [75000553]

向作者/读者索取更多资源

Spatial patterns, cluster or dispersion trends are statistically different from random patterns of trace elements (TEs), which are essential to recognize, e.g., how they are distributed and change their behavior in different environmental processes and/or in the polluted/contaminated areas caused by urban and industrial pollutant located in upstream basins and/or by different natural geological conditions. The present study focused on a statistical approach to obtain the spatial variability of TEs (As, B and Sb) in shallow groundwater (GW) in a high-altitude arid region (Lower Katari Basin, Bolivian Altiplano), using multivariate analysis (PCA and HCA), geochemical modeling (PHREEQC, MINTEQ) and spatial analyses (Moran's 1 and LISA), considering the community supply wells. The results indicate that despite of the outliers there is a good autocorrelation in all cases, since Moran's I values are positive. The global spatial dependence analysis indicated a positive and statistically significant spatial autocorrelation (SA) for all cases and TEs are not randomly distributed at 99% confidence level. The results of hydrochemical modeling suggested the precipitation and stability of Fe (III) phases such as goethite. The re-adsorption of As and Sb on the mineral surface in the aquifer could be limiting the concentrations of both metalloids in southern regions. Spatial autocorrelation was positive (High-High) in northwestern (arsenic), southeastern (boron) and northeastern (antimony) region. The results reflected that the As and Sb are the main pollutants linked to the natural geological conditions, but B is a main pollutant due to the anthropogenic activities. Furthermore, >50% shallow groundwater exceeded the WHO limit and NB-512 guideline values for Sb (87%), B (56%) and As (50%); therefore the spatial distribution and concentrations of these TEs in GW raise a significant concern about drinking water quality in the study area. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据