4.7 Article

Metabolic profiles of moso bamboo in response to drought stress in a field investigation

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 720, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.137722

关键词

Metabolic profiles; Drought stress; Moso bamboo; LC-MS; Pathways

资金

  1. National Natural Science Foundation of China [31670607, 31600492, 31600503]
  2. Fundamental Research Funds for the Central Non-profit Research Institution of CAF [CAFYBB2018GB001]
  3. National Key Research and Development Program of theMinistry of Science and Technology of China [2016YFD0600202-4]

向作者/读者索取更多资源

An increasing number of moso bamboo habitats are suffering severe drought events. The improvement in our understanding of the mechanisms of drought-resistance in moso bamboo benefits their genetic improvement and maintenance of forest sustainability. Here, we investigated the metabolic changes across the annual growth cycle of moso bamboo in the field under drought stress using liquid chromatography coupled to mass spectrometry (LC-MS) based on untargeted metabolomic profiling. Our results showed that the metabolic profiles induced by drought stress were relatively consistent among the three growth stages. Specifically, most responsive metabolites exhibited enhanced accumulation under drought stress, including anthocyanins, glycosides, organic acids, amino acids, and sugars and sugar alcohols. The potential metabolism pathways involved in the response to drought stress were mainly included into amino acid metabolism and sugar metabolism pathways. Five common responsive metabolic pathways were found among three growth stages, including linoleic acid metabolism, ubiquinone and other terpenoid-quinone biosynthesis, tyrosine metabolism, starch and sucrose metabolism and isoquinoline alkaloid biosynthesis. Overall, our findings provide new insights into the responsive mechanisms of the moso bamboo under drought stress in terms of metabolic profiles. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据