4.7 Article

Prospective carbon footprint comparison of hydrogen options

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 728, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.138212

关键词

Biomass gasification; Electrolysis; Global warming; Hydrogen; Prospective life cycle assessment; Steam methane reforming

资金

  1. SpanishMinistry of Economy, Industry and Competitiveness [ENE2015-74607-JIN AEI/FEDER/UE]

向作者/读者索取更多资源

The Life Cycle Assessment methodology is often used to evaluate the environmental performance of hydrogen energy systems. However, even though hydrogen is usually seen as a strategic energy carrier for the future energy sector, there is a lack of case studies assessing its prospective life-cycle performance. In order to contribute to filling this gap, this work addresses a carbon footprint comparison of hydrogen options from a prospective standpoint. Four relevant hydrogen production pathways (steam methane reforming, grid-powered alkaline electrolysis, wind-powered alkaline electrolysis, and biomass gasification) under three time scenarios (reference, year 2030, and year 2050) are assessed, taking into account the expected evolution of key technical parameters such as efficiencies, lifespans, and the grid electricity mix. The results show a favourable carbon footprint of renewable hydrogen from biomass gasification and wind electrolysis, with a relatively steady near-zero carbon footprint. Despite the unfavourable carbon footprint results of conventional hydrogen from steam methane reforming and hydrogen from grid electrolysis, the latter is associated with a rapid trend towards a suitable long-term carbon footprint.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据