4.6 Article

Environmentally benign rapid biosynthesis of extracellular gold nanoparticles using Aspergillus flavus and their cytotoxic and catalytic activities

期刊

PROCESS BIOCHEMISTRY
卷 95, 期 -, 页码 1-11

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.procbio.2020.04.015

关键词

Gold nanoparticles; Biosynthesis; Aspergillus flavus; Anticancer agent; Apoptosis; Catalysis

向作者/读者索取更多资源

In this study, the rapid biosynthesis of gold nanoparticles (AuNPs) by Aspergillus flavus culture supernatant was achieved by reducing 1 mM of chloroauric acid (HAuCl4) within 2 min at pH 7 and 30 degrees C. The biosynthesized nanoparticles exhibited maximum absorbance at 545 nm in UVvis spectroscopy. Transmission electron microscopy exhibited that AuNPs tend to take nearly spherical shapes with an average size of 12 nm. Fourier transform infrared analysis indicated that carboxyl, amine, and hydroxyl groups may participate in the biosynthesis and stabilization of AuNPs. Its zeta potential was found to be -33.01 mV. Energy dispersive X-rays showed a strong and typical beak of gold nanocrystallites with 80.84 % of analyzed sample. X-Ray diffraction spectrum displayed Bragg reflections identical to the gold nanocrystals. The results confirmed that biosynthesized AuNPs are a potent anticancer agent against A549, HepG2 and MCF7 cell lines with IC50 value 53.5, 60.7 and 100 mu g/mL, respectively. Crystal violet assay confirmed the cytopathic effects of AuNPs on HepG2 and A549 cell lines. Annexin-V FITC assay and cell cycle confirmed the apoptotic effect and cell cycle arrest in G2/M phase, respectively for A549 cell line. Moreover, the results showed a degradation efficiency of AuNPs to 4-nitrophenol within 16 min.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据