4.6 Article

The genome, transcriptome, and proteome of the fish parasitePomphorhynchus laevis(Acanthocephala)

期刊

PLOS ONE
卷 15, 期 6, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0232973

关键词

-

资金

  1. Johannes Gutenberg University Mainz

向作者/读者索取更多资源

Thorny-headed worms (Acanthocephala) are endoparasites exploiting Mandibulata (Arthropoda) and Gnathostomata (Vertebrata). Despite their world-wide occurrence and economic relevance as a pest, genome and transcriptome assemblies have not been published before. However, such data might hold clues for a sustainable control of acanthocephalans in animal production. For this reason, we present the first draft of an acanthocephalan nuclear genome, besides the mitochondrial one, using the fish parasitePomphorhynchus laevis(Palaeacanthocephala) as a model. Additionally, we have assembled and annotated the transcriptome of this species and the proteins encoded. A hybrid assembly of long and short reads resulted in a near-completeP.laevisdraft genome of ca. 260 Mb, comprising a large repetitive portion of ca. 63%. Numbers of transcripts and translated proteins (35,683) were within the range of other members of the Rotifera-Acanthocephala clade. Our data additionally demonstrate a significant reorganization of the acanthocephalan gene repertoire. Thus, more than 20% of the usually conserved metazoan genes were lacking inP.laevis. Ontology analysis of the retained genes revealed many connections to the incorporation of carotinoids. These are probably taken up via the surface together with lipids, thus accounting for the orange coloration ofP.laevis. Furthermore, we found transcripts and protein sequences to be more derived inP.laevisthan in rotifers from Monogononta and Bdelloidea. This was especially the case in genes involved in energy metabolism, which might reflect the acanthocephalan ability to use the scarce oxygen in the host intestine for respiration and simultaneously carry out fermentation. Increased plasticity of the gene repertoire through the integration of foreign DNA into the nuclear genome seems to be another underpinning factor of the evolutionary success of acanthocephalans. In any case, energy-related genes and their proteins may be considered as candidate targets for the acanthocephalan control.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据