4.8 Article

Shape Deformation of Nanoresonator: A Quasinormal-Mode Perturbation Theory

期刊

PHYSICAL REVIEW LETTERS
卷 125, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.125.013901

关键词

-

资金

  1. National Key Research and Development Program of China [2017YFA0205700]
  2. National Natural Science Foundation of China [61927820]
  3. ANR project Resonance [ANR-16-CE24-0013]
  4. Agence Nationale de la Recherche (ANR) [ANR-16-CE24-0013] Funding Source: Agence Nationale de la Recherche (ANR)

向作者/读者索取更多资源

When material parameters are fixed, optical responses of nanoresonators are dictated by their shapes and dimensions. Therefore, both designing nanoresonators and understanding their underlying physics would benefit from a theory that predicts the evolutions of resonance modes of open systems-the so-called quasinormal modes (QNMs)-as the nanoresonator shape changes. QNM perturbation theories (PTs) are one ideal choice. However, existing theories developed for tiny material changes are unable to provide accurate perturbation corrections for shape deforniations. By introducing a novel extrapolation technique, we develop a rigorous QNM PT that faithfully represents the electromagnetic fields in perturbed domain. Numerical tests performed on the eigenfrequencies, eigenmodes, and optical responses of deformed nanoresonators evidence the predictive force of the present PT, even for large deformations. This opens new avenues for inverse design, as we exemplify by designing super-cavity modes and exceptional points with remarkable ease and physical insight.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据