4.6 Article

Speckled speckled speckle

期刊

OPTICS EXPRESS
卷 28, 期 15, 页码 22105-22120

出版社

OPTICAL SOC AMER
DOI: 10.1364/OE.398226

关键词

-

类别

资金

  1. Defense Advanced Research Projects Agency [HR0011-16-C-0030]

向作者/读者索取更多资源

Speckle is the spatial fluctuation of irradiance seen when coherent light is reflected from a rough surface. It is due to light reflected from the surface's many nooks and crannies accumulating vastly discrepant time delays, spanning much more than an optical period, en route to an observation point. Although speckle with continuous-wave (cw) illumination is well understood, the emerging interest in non-line-of-sight (NLoS) imaging using coherent light has created the need to understand the higher-order speckle that results from multiple rough-surface reflections, viz., speckled speckle and speckled speckled speckle. Moreover, the recent introduction of phasor-field (P-field) NLoS imaging-which relies on amplitude-modulated coherent illumination-requires pushing beyond cw scenarios for speckle and higher-order speckle. In this paper, we take first steps in addressing the foregoing needs using a three-diffuser transmissive geometry that is a proxy for three-bounce NLoS imaging. In the small-diffusers limit, we show that the irradiance variances of cw and modulated nth-order speckle coincide and are (2(n)- 1)-times those of ordinary (first-order) speckle. The more important case for NLoS imaging, however, involves extended diffuse reflectors. For our transmissive geometry with extended diffusers, we treat third-order cw speckle and first-order modulated speckle. Our results there imply that speckle is unlikely to impede successful operation of coherent-illumination cw imagers, and they suggest that the same might be true for P-field imagers. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据