4.6 Article

Controlled diffusion of nanoparticles by viscosity gradient for photonic crystal with dual photonic band gaps

期刊

NANOTECHNOLOGY
卷 31, 期 43, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1361-6528/aba57c

关键词

viscosity gradient; self-assemble; miscible; nanoparticle; photonic crystal

资金

  1. National Natural Science Foundation of China [51573193]

向作者/读者索取更多资源

Coalescence of droplets containing nanoparticles has been paid much attention regarding fabrication of functional photonic crystal (PC) patterns. However, most studies focus on the coalescence of droplets containing the same nanoparticles. Currently, an active challenge comes from the coalescence of droplets containing different nanoparticles due to the spontaneous mutual diffusion of different nanoparticles between coalescing miscible droplets driven by the released Gibbs free energy. Such diffusion breaks the self-assembly of nanoparticles into promising PCs with dual photonic band gaps (PBGs). In this work, a viscosity gradient was induced in coalescing droplets containing different nanoparticles to control the diffusion of nanoparticles and impede the diffusion across the coalescing interface. Nanoparticles diffused along the viscosity gradient to droplet surfaces and self-assembled into a period structure which enhanced the interaction of nanoparticles and contributed to impeding the random diffusion between droplets. At the same time, the high viscosity at the coalescing interface slowed down the horizontal movement of nanoparticles further and consequently the diffusion of nanoparticles across the interface was impeded. By use of such controlled diffusion of nanoparticles in the viscosity gradient, PCs with PBGs were achieved. These results demonstrate the controlled diffusion of nanoparticles during the coalescence of miscible droplets to facilely fabricate PCs with PBGs in the absence of an existing external field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据