4.6 Article

Sandwiched Cu7S4@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries: Enhanced cycling stability and electrocatalytic dynamics of polysulfides

期刊

MATERIALS CHEMISTRY AND PHYSICS
卷 250, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.matchemphys.2020.123143

关键词

Polysulfide/iodide; Electrocatalytic; Sandwich; Nanocages; Flow battery

资金

  1. National Natural Science Foundation of China [21771124, 21673273]
  2. Science and Technology Commission of Shanghai Municipality [17ZR1441200, 18QA1402400, 18230743400, 19JC1412600]

向作者/读者索取更多资源

Aqueous polysulfide/iodide redox flow battery (RFB) with highly soluble active species are attractive candidates for scalable energy storage, offering noticeable reduced RFB cost. Though, poor reversibility and electrochemical activity of the redox reaction of polysulfide couples on graphite felt electrode restricts its energy efficiency. Herein, a facile method to improve the electrocatalytic activity by fabrication of skeletal Cu7S4 hollow nanocages with copper vacancies is presented. Cu7S4 nanoparticles can selectively boost the electrocatalytic activities of S2-/S-x(2-) redox reactions and suppress the hydrogen evolution side reaction. In addition, the hollow opening structure of skeletal Cu7S4 served as the catalytic active site (both the inner side and outer surface), accelerating the electrolyte transport and promoting the charge transfer process. A sandwiched electrode was constructed by coating Cu7S4 nanocages into the interlayer of graphite felt. The polysulfide/iodide flow battery with SKE-Cu7S4 sandwich structure electrode can generate high energy efficiency of 78.5% at 20 mA cm(-2) , power density of 30.6 mW cm(-2) and a stable energy efficiency retention of 92% after approximately 200 continuous cycles suggesting their potential use for future scalable RFBs. The developing of highly efficient and stable electrocatalyst for the electro-conversion of polysulfides will boost the performance and application of polysulfide-based flow batteries and other energy devices involved with polysulfides such as, quantum dots sensitized solar cells, Li-S batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据