4.3 Article

Synthesis of rGO/CuO/Ag Ternary Nanocomposites Via Hydrothermal Approach for Opto-electronics and Supercapacitor Applications

期刊

出版社

SPRINGER
DOI: 10.1007/s10948-020-05594-z

关键词

Hydrothermal method; rGO; CuO; Ag ternary nanocomposites; Electrical properties; Opto-electronics application; Energy storage device

向作者/读者索取更多资源

The present investigation deals with the synthesis of reduced graphene oxide (rGO)/copper oxide (CuO)/silver (Ag) ternary nanocomposites (NCs) by hydrothermal method to improve the electrical behavior. In typical synthesis, ammonia was used as a reducing agent at room temperature. The powder X-ray diffraction (PXRD) pattern revealed the existence of single-phase monoclinic structure and face-centered cubic (FCC) phase of CuO and Ag. Other phase impurities were also observed from the prepared rGO/CuO/Ag NCs. The surface morphology of rGO/CuO/Ag NCs was investigated by SEM and TEM analysis. The surface elemental composition of the prepared material was investigated by the EDAX analysis. The dielectric response of the materials was studied by dielectric constant, dielectric loss, and AC conductivity studies. The lesser amount of activation energy was attained from the synthesized rGO/CuO/Ag NCs, and it was proved that this type of material is the most emerging candidate for various opto-electronics application. The electrochemical behavior was studied by the cyclic voltammetry (CV), galvanostatic charge discharge (GCD), and electrochemical impedance spectroscopy (EIS) measurements. From this study, ideal capacitance behavior with high capacitance of about 575 F/g was achieved respectively for rGO/CuO/Ag NCs at the current density of 1 Ag(-1)in 0.5 M K(2)SO(4)electrolyte solution. These superior electrochemical features demonstrated that the prepared rGO/CuO/Ag NCs are a potential candidate for next-generation supercapacitor systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据