4.6 Article

Graphene-based electrochemical genosensor incorporated loop-mediated isothermal amplification for rapid on-site detection of Mycobacterium tuberculosis

出版社

ELSEVIER
DOI: 10.1016/j.jpba.2020.113333

关键词

Mycobacterium tuberculosis; Mini-potentiostat; Graphene; Screen-printed electrode; LAMP-EC

资金

  1. National Research Council of Thailand [GRA-BT-2559-2058-TH]
  2. Drug Resistant Tuberculosis Research Fund under the Patronage to Her Royal Highness Princess Galayani Vadhana Krom Luang Naradhiwas Rajanagarindra, Siriraj Foundation, Faculty of Medicine Siriraj Hospital, Mahidol University
  3. Thailand Research Fund [RTA6180004]

向作者/读者索取更多资源

Tuberculosis (TB) is one of the most contagious and lethal infectious diseases that affects more than 10 million individuals worldwide. A lack of rapid TB diagnosis is partly responsible for its alarming spread and prevalence in many regions. To address this problem, we report a novel integrated point-of-care platform to detect a TB-causative bacterium, Mycobacterium tuberculosis (Mtb). This leverages loop-mediated isothermal amplification (LAMP) for Mtb-DNA amplification and the screen-printed graphene electrode (SPGE) for label-free electrochemical analysis of DNA amplicons. When implemented on a portable potentiostat device developed in-house, the system (LAMP-EC) offers a rapid end-point qualitative analysis of specific DNA amplicons that will be displayed as a discrete positive/negative readout on the LCD screen. Under optimized conditions, LAMP-EC showed a comparable detection limit to the previously developed LAMP assay with a lateral flow readout at 1 pg total DNA or 40 Mtb genome equivalents. This highly specific technique detected the presence of TB in all 104 blinded sputum samples with a 100% accuracy. Our technique can also easily be clinically adopted due to its affordability (similar to USD2.5/test), rapidity (<65 min turnaround time) and feasibility (lack of advanced instrumental requirement). This serves as a practical incentive, appealing to users in both high- and low-resource settings across the TB endemic regions and economic backgrounds. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据