4.7 Review

SO2 absorption in pure ionic liquids: Solubility and functionalization

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 392, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2020.122504

关键词

SO2 solubility; Ionic liquids; Functionality; Absorption mechanisms; SO2/CO2 selectivity

资金

  1. National Natural Science Foundation of China [51874124]
  2. Doctoral Fund of Ministry of Education of China [2018T110725]
  3. Program for Innovative Research Team of Henan Polytechnic University [T2018-2, J2019-5]
  4. Key Scientific Research Projects Plan of Henan Higher Education Institutions [19A440009]

向作者/读者索取更多资源

The SO2 solubility in ionic liquids and absorption mechanisms with different functionalities, including ether, halide, carboxylate, dicarboxylate, thiocynate, phenol, amino, azole groups, etc., are presented in this review. Strategies of improving SO2 capture with low binding energy and the separation performance from CO2 are also concluded. Generally, moderate basicity is favourable for enhancing SO2 capacity and the water (below 6 wt%) effect on absorption is indefinite but generally slight. Introducing electron-withdrawing substituents such as nitrile, halogen, aldehyde and carboxylic groups are proposed to decrease the chemical absorption enthalpy between ionic liquid and SO(2 )in order to reduce regeneration power consumption. Although it is promising, the absorption enthalpy is still much higher than the physisorption performance especially of the ether-functionalized ones. The biocompatible choline-based, betaine-based, and amino acid ionic liquids have clear trends to be applied in SO2 capture due to their biodegradability, nontoxicity and easy accessibility. Generally, comparing to the traditional solvents, ionic liquids have made great improvement in SO2 capacity, however, the high viscosity and desorption energy are two main obstacles for SO(2 )absorption and separation. Molecular simulations have been applied to reveal the absorption regimes involving the roles of basic functionalities and physical interactions especially the hydrogen bonds, which could be referred for structure designing of the available ionic liquids with readily fluid characteristics and absorption ability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据