4.7 Article

Many-body reactive force field development for carbon condensation in C/O systems under extreme conditions

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 153, 期 5, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0012840

关键词

-

资金

  1. U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344, 17-ERD-011]
  2. Laboratory Directed Research and Development Program at LLNL

向作者/读者索取更多资源

We describe the development of a reactive force field for C/O systems under extreme temperatures and pressures, based on the many-body Chebyshev Interaction Model for Efficient Simulation (ChIMES). The resulting model, which targets carbon condensation under thermodynamic conditions of 6500 K and 2.5 g cm(-3), affords a balance between model accuracy, complexity, and training set generation expense. We show that the model recovers much of the accuracy of density functional theory for the prediction of structure, dynamics, and chemistry when applied to dissociative condensed phase systems at 1:1 and 1:2 C:O ratios, as well as molten carbon. Our C/O modeling approach exhibits a 10(4) increase in efficiency for the same system size (i.e., 128 atoms) and a linear system size scalability over standard quantum molecular dynamics methods, allowing the simulation of significantly larger systems than previously possible. We find that the model captures the condensed-phase reaction-coupled formation of carbon clusters implied by recent experiments, and that this process is susceptible to strong finite size effects. Overall, we find the present ChIMES model to be well suited for studying chemical processes and cluster formation at pressures and temperatures typical of shock waves. We expect that the present C/O modeling paradigm can serve as a template for the development of a broader high pressure-high temperature force-field for condensed phase chemistry in organic materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据