4.7 Article

A semi-active metamaterial beam with electromagnetic quasi-zero-stiffness resonators for ultralow-frequency band gap tuning

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijmecsci.2020.105548

关键词

High-static-low-dynamic-stiffness; Locally resonant metamaterials; Semi-active resonator; Ultralow frequency; Tuneable band gap

资金

  1. National Key R&D Program of China [2017YFB1102801]
  2. National Natural Science Foundation of China [11972152, 11572116]
  3. Laboratory of Science and Technology on Integrated Logistics Support
  4. China Scholarship Council (CSC)

向作者/读者索取更多资源

Introducing a negative-stiffness mechanism (NSM) into a traditional linear resonator to form a high-static-low-dynamic-stiffness (HSLDS) resonator is an ideal way to create a low-frequency band gap. However, with the decrease in frequencies of the band gap, the band width narrows, which could hinder the application of the metamaterials for attenuating ultralow-frequency elastic waves. In this paper, a regulatory mechanism (RM) constituted by an electrically charged coil and a magnet ring is introduced into an HSLDS resonator to devise a semi-active quasi-zero-stiffness (QZS) resonator. With these semi-active resonators attached onto a beam periodically, a semi-active metamaterial beam (meta-beam) is realized. The expressions of both the restoring force and the stiffness of the semi-active resonator are derived firstly, and then the theoretical dispersion relation and the band structure are obtained by the transfer matrix method. Finally, by establishing and then numerically solving the equation of motion of the semi-active meta-beam, the wave transmissibility is acquired and utilized to validate the theoretically predicted band structure. The analytical and numerical results show that the band gap can be effectively tuned by the RM, which enables excellent wave manipulation in an ultralow and wide frequency range.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据