4.7 Article

Effective PtAu nanowire network catalysts with ultralow Pt content for formic acid oxidation and methanol oxidation

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 45, 期 32, 页码 16071-16079

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2020.04.003

关键词

Electrocatalysis; Formic acid oxidation; Methanol oxidation reaction; Nanowire network; Platinum

资金

  1. National Key Research and Development Program of China [2017YFA0204800]
  2. National MCF Energy RD Program [2018YFE0306105]
  3. National Natural Science Foundation of China [51902217]
  4. Collaborative Innovation Center of Suzhou Nano Science Technology
  5. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
  6. 111 Project

向作者/读者索取更多资源

Pt is the ideal anode catalyst in fuel cells. In this paper, in order to increase the utilization of Pt, the PtAu nanowire networks (NWNs) with ultralow content of Pt are fabricated by a simple silicon monoxide (SiO) reduction method without any capping agent. PtAu NWNs supported on carbon black with Pt content of 1 wt% (Pt0.05Au NWNs) are employed as catalysts for formic acid oxidation (FAO) and methanol oxidation reaction (MOR), whose mass activities are as high as 4998.9 and 2282.3 mA.mg(Pt)(-1), respectively. The network structure facilitates the electron transfer and increases the stability of the catalysts. The PtAu composite experiences compressive lattice strain as confirmed by X-ray powder diffraction (XRD). The Pt0.05Au NWNs catalyst with low Pt content results in the largest strain variation compared with PtAu composited of other ratios, which may downshift the d-band center of Pt and lead to the higher electrocatalytic activity in oxidation reaction. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据