4.4 Article

Studies on mechanical, thermal and tribological properties of carbon fibre-reinforced boron nitride-filled epoxy composites

期刊

HIGH PERFORMANCE POLYMERS
卷 32, 期 9, 页码 1061-1081

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/0954008320929396

关键词

Mechanical properties; BN-CF; Ep composites; dynamic mechanical analyser; thermogravimetric analyser; tribological properties; scanning electron microscopy

资金

  1. Department of MME, NITT

向作者/读者索取更多资源

This research focuses on the static mechanical, thermal and tribological properties of carbon fibre epoxy (CF/Ep) composites filled with boron nitride (BN) micro-filler powder (BN-CF/Ep). The mechanical properties studied were tensile, flexural, interlaminar shear strength and hardness. The thermal properties studied were dynamic mechanical and thermogravimetric analyses which were analysed through dynamic mechanical analyser and thermogravimetric analyser, respectively. The curing ability and dispersion of BN filler in the Ep and composites were investigated through differential scanning calorimetry, Fourier-transform infrared spectra and scanning electron microscopy. The tribological properties focused were three-body abrasion and dry sliding friction and wear conduct. Three-body abrasion tests were studied with silica sand of 212 mu m particle size, 30 N load, 2.38 m s(-1)sliding velocity and variable abrasive distances of 250 m, 500 m, 750 m and 1000 m. The dry sliding wear tests were performed using pin-on-disc (POD) wear experimental set-up with 60 N load, 3 m s(-1)sliding velocity and variable sliding distances of 1000 m, 2000 m and 3000 m. The results followed the trend of BN1% > BN3% > BN5% composites in all mechanical properties. The carbon fabric reinforcement along with the BN-Ep matrix improved enormously all the mechanical properties except impact resistance. Further, it was exhibited that 1 wt% BN into CF/Ep prompts better mechanical properties with predominant damping capacity and thermal stability. Both the dry sand abrasive wear and POD test outcomes revealed that all BN-CF/Ep composites prompt predominant wear resistance. CF along with BN improves enormously the wear resistance with friction coefficient. Further, it was exhibited that 1 wt% BN into CF/Ep in both three-body abrasive and POD tests prompts better wear resistance. Generally speaking, it was presumed that BN-CF/Ep gracefully and successfully improved the mechanical, thermal and tribological properties and morphology of Ep for various mechanical, electrical components and load-bearing applications used in automotive and engineered applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据