4.8 Article

Agricultural acceleration of soil carbonate weathering

期刊

GLOBAL CHANGE BIOLOGY
卷 26, 期 10, 页码 5988-6002

出版社

WILEY
DOI: 10.1111/gcb.15207

关键词

C-14; carbon sequestration; climate engineering; crop cultivation; deep drainage; dryland; precipitation gradient; soil inorganic carbon stock

资金

  1. National Science Foundation [0910294, 0717191, 2006044266, 0920355]
  2. FP7 People: Marie-Curie Actions [FP7-PEOPLE-2013-IEF-626334]
  3. Division Of Environmental Biology
  4. Direct For Biological Sciences [0717191, 0910294] Funding Source: National Science Foundation

向作者/读者索取更多资源

Soil carbonates (i.e., soil inorganic carbon or SIC) represent more than a quarter of the terrestrial carbon pool and are often considered to be relatively stable, with fluxes significant only on geologic timescales. However, given the importance of climatic water balance on SIC accumulation, we tested the hypothesis that increased soil water storage and transport resulting from cultivation may enhance dissolution of SIC, altering their local stock at decadal timescales. We compared SIC storage to 7.3 m depth in eight sites, each having paired plots of native vegetation and rain-fed croplands, and half the sites having additional irrigated cropland plots. Rain-fed and irrigated croplands had 328 and 730 Mg C/ha less SIC storage, respectively, compared to their native vegetation (grassland or woodland) pairs, and irrigated croplands had 402 Mg C/ha less than their rain-fed pairs (p < .0001). SIC contents were negatively correlated with estimated groundwater recharge, suggesting that dissolution and leaching may be responsible for SIC losses observed. Under croplands, the remaining SIC had more modern radiocarbon and a delta C-13 composition that was closer to crop inputs than under native vegetation, suggesting that cultivation has led to faster turnover and incorporation of recent crop carbon into the SIC pool (p < .0001). The losses occurred just 30-100 years after land-use changes, indicating SIC stocks that were stable for millennia can rapidly adjust to increased soil water flows. Large SIC losses (194-242 Mg C/ha) also occurred below 4.9 m deep under irrigated croplands, with SIC losses lagging behind the downward-advancing wetting front by similar to 30 years, suggesting that even deep SIC were affected. These observations suggest that the vertical distribution of SIC in dry ecosystems is dynamic on decadal timescales, highlighting its potential role as a carbon sink or source to be examined in the context of land use and climate change.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据