4.7 Article

Electrocardiogram heartbeat classification based on a deep convolutional neural network and focal loss

期刊

COMPUTERS IN BIOLOGY AND MEDICINE
卷 123, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compbiomed.2020.103866

关键词

ECG Classification; AAMI standard; Convolutional neural network; Focal loss; Heartbeat category; Imbalanced data; INCART; MIT-BIH

资金

  1. research center of the College of Computer and Information Sciences, King Saud University, KSA

向作者/读者索取更多资源

The electrocardiogram (ECG) is an effective tool for cardiovascular disease diagnosis and arrhythmia detection. Most methods proposed in the literature include the following steps: 1) denoizing, 2) segmentation into heartbeats, 3) feature extraction, and 4) classification. In this paper, we present a deep learning method based on a convolutional neural network (CNN) model. CNN models can perform feature extraction automatically and jointly with the classification step. In other words, our proposed method does not require a feature extraction step with hand-crafted techniques. Our proposed method is also based on an algorithm for heartbeat segmentation that is different from most existing methods. In particular, the segmentation algorithm defines each ECG heartbeat to start at an R-peak and end after 1.2 times the median RR time interval in a 10-s window. This method is simple and effective, as it does not use any form of filtering or processing that requires assumptions about the signal morphology or spectrum. Although enhanced ECG heartbeat classification algorithms have been proposed in the literature, they failed to achieve high performance in detecting some heartbeat categories, especially for imbalanced datasets. To overcome this challenge, we propose an optimization step for the deep CNN model using a novel loss function called focal loss. This function focuses on minority heartbeat classes by increasing their importance. We trained and evaluated our proposed model with the MIT-BIH and INCART datasets to identify five arrhythmia categories (N, S, V, Q, and F) based on the Association for Advancement of Medical Instrumentation (AAMI) standard. The evaluation results revealed that the focal loss function improved the classification accuracy for the minority classes as well as the overall metrics. Our proposed method achieved 98.41% overall accuracy, 98.38% overall F1-score, 98.37% overall precision, and 98.41% overall recall. In addition, our method achieved better performance than that of existing state-of-the-art methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据