4.7 Article

Metabolite-Based Modification of Poly(L-lysine) for Improved Gene Delivery

期刊

BIOMACROMOLECULES
卷 21, 期 9, 页码 3596-3607

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.biomac.0c00614

关键词

-

向作者/读者索取更多资源

Synthetic gene delivery systems employ multiple functions to enable safe and effective transport of DNA to target cells. Here, we describe metabolite-based poly(L-lysine) (PLL) modifiers that improve transfection by imparting both pH buffering and nanoparticle stabilization functions within a single molecular unit. PLL modifiers were based on morpholine (M), morpholine and niacin (MN), or thiomorpholine (TM). PLL modification with (MN) or (TM) imparted buffering function over the pH range of 57 both in solution and live cells and enhanced the stability of PLL DNA nanoparticles, which exhibited higher resistance to polyanion exchange and prolonged blood circulation. These properties translated into increased transfection efficiency in vitro coupled with reduced toxicity compared to unmodified PLL and PLL(M). Furthermore, PEG-PLL(MN) DNA nanoparticles transfected muscle tissue in vivo for >45 days following intramuscular injection. These polymer modifiers demonstrate the successful design of multifunctional units that improve transfection of synthetic gene delivery systems while maintaining biocompatibility.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据