4.8 Article

Power-generating trees: Direct bioelectricity production from plants with microbial fuel cells

期刊

APPLIED ENERGY
卷 268, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2020.115040

关键词

Plant-microbial fuel cell; Stem-couple; Bioelectricity production; Commensalism; Energy plant; Biosensing

资金

  1. National Key Research and Development Plans of Special Project for Site Soils [2018YFC1800600]
  2. National Natural Science Foundation of China [21876050]
  3. Special Fund from State Key Joint Laboratory of Environment Simulation and Pollution Control [18K10ESPCT]

向作者/读者索取更多资源

Although plant-microbial fuel cells (PMFCs) have been considered as an alternative approach to utilize plants as an energy source, the application of a conventional PMFC coupled with rhizodeposits is immensely limited by environmental factors and plant species. In this research, we suggested a new concept for a device that can directly generate continuous bioelectricity from the plant stem associated with microbial fuel cells (MFCs), in which Pachira macrocarpa and Populus alba were employed. Compared with a conventional PMFC, the novel PMFC coupled with the plant stems produced more stable and continuous bioelectricity without oscillatory behaviour as well as a much shorter start-up period. The stem-coupled PMFCs produced bioelectricity that were operated at least 40 days. P. alba coupled PMFC showed higher power output compared to P. macrocarpa counterparts and the maximal power densities were 7.61 mW m(-2) and 3.60 mW m(-2) anode surface, respectively. Besides, we explored the response of the novel PMFC to different substrate concentrations and observed that the cell voltage effectively increased after the injection of moderate substrate concentrations. Moreover, the anodic bacteria formed a commensal relationship with the plant.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据