4.8 Article

Strain-Engineered Anisotropic Optical and Electrical Properties in 2D Chiral-Chain Tellurium

期刊

ADVANCED MATERIALS
卷 32, 期 29, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202002342

关键词

2D tellurium; anisotropy; strain engineering

资金

  1. National Science Foundation [CMMI-1762698, CMMI-1538360]
  2. Purdue College of Engineering EFC Future of Manufacturing program

向作者/读者索取更多资源

Atomically thin materials, leveraging their low-dimensional geometries and superior mechanical properties, are amenable to exquisite strain manipulation with a broad tunability inaccessible to bulk or thin-film materials. Such capability offers unexplored possibilities for probing intriguing physics and materials science in the 2D limit as well as enabling unprecedented device applications. Here, the strain-engineered anisotropic optical and electrical properties in solution-grown, sub-millimeter-size 2D Te are systematically investigated through designing and introducing a controlled buckled geometry in its intriguing chiral-chain lattice. The observed Raman spectra reveal anisotropic lattice vibrations under the corresponding straining conditions. The feasibility of using buckled 2D Te for ultrastretchable strain sensors with a high gauge factor (approximate to 380) is further explored. 2D Te is an emerging material boasting attractive characteristics for electronics, sensors, quantum devices, and optoelectronics. The results suggest the potential of 2D Te as a promising candidate for designing and implementing flexible and stretchable devices with strain-engineered functionalities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据