4.8 Article

Multicompartment Polymer Vesicles with Artificial Organelles for Signal-Triggered Cascade Reactions Including Cytoskeleton Formation

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 30, 期 32, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202002949

关键词

artificial organelles; biomimetic actin cytoskeleton; signalling pathways mimics; stimuli-responsive multicompartment systems; synthetic giant vesicles; polymersomes

资金

  1. Swiss National Science Foundation
  2. NCCR-MSE
  3. University of Basel

向作者/读者索取更多资源

Organelles, i.e., internal subcompartments of cells, are fundamental to spatially separate cellular processes, while controlled intercompartment communication is essential for signal transduction. Furthermore, dynamic remodeling of the cytoskeleton provides the mechanical basis for cell shape transformations and mobility. In a quest to develop cell-like smart synthetic materials, exhibiting functional flexibility, a self-assembled vesicular multicompartment system, comprised of a polymeric membrane (giant unilamellar vesicle, GUV) enveloping polymeric artificial organelles (vesicles, nanoparticles), is herein presented. Such multicompartment assemblies respond to an external stimulus that is transduced through a precise sequence. Stimuli-triggered communication between two types of internal artificial organelles induces and localizes an enzymatic reaction and allows ion-channel mediated release from storage vacuoles. Moreover, cytoskeleton formation in the GUVs' lumen can be triggered by addition of ionophores and ions. An additional level of control is achieved by signal-triggered ionophore translocation from organelles to the outer membrane, triggering cytoskeleton formation. This system is further used to study the diffusion of various cytoskeletal drugs across the synthetic outer membrane, demonstrating potential applicability, e.g., anticancer drug screening. Such multicompartment assemblies represent a robust system harboring many different functionalities and are a considerable leap in the application of cell logics to reactive and smart synthetic materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据