4.7 Article

Predicting Hard Rock Pillar Stability Using GBDT, XGBoost, and LightGBM Algorithms

期刊

MATHEMATICS
卷 8, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/math8050765

关键词

pillar stability; hard rock; prediction; gradient boosting decision tree (GBDT); extreme gradient boosting (XGBoost); light gradient boosting machine (LightGBM)

资金

  1. National Natural Science Foundation of China [51774321]
  2. National Key Research and Development Program of China [2018YFC0604606]

向作者/读者索取更多资源

Predicting pillar stability is a vital task in hard rock mines as pillar instability can cause large-scale collapse hazards. However, it is challenging because the pillar stability is affected by many factors. With the accumulation of pillar stability cases, machine learning (ML) has shown great potential to predict pillar stability. This study aims to predict hard rock pillar stability using gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), and light gradient boosting machine (LightGBM) algorithms. First, 236 cases with five indicators were collected from seven hard rock mines. Afterwards, the hyperparameters of each model were tuned using a five-fold cross validation (CV) approach. Based on the optimal hyperparameters configuration, prediction models were constructed using training set (70% of the data). Finally, the test set (30% of the data) was adopted to evaluate the performance of each model. The precision, recall, and F(1)indexes were utilized to analyze prediction results of each level, and the accuracy and their macro average values were used to assess the overall prediction performance. Based on the sensitivity analysis of indicators, the relative importance of each indicator was obtained. In addition, the safety factor approach and other ML algorithms were adopted as comparisons. The results showed that GBDT, XGBoost, and LightGBM algorithms achieved a better comprehensive performance, and their prediction accuracies were 0.8310, 0.8310, and 0.8169, respectively. The average pillar stress and ratio of pillar width to pillar height had the most important influences on prediction results. The proposed methodology can provide a reliable reference for pillar design and stability risk management.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据